scholarly journals Removal of Iron from Groundwater by Ozonation: The Response Surface Methodology for Parameter Optimization

2021 ◽  
Vol 19 (4) ◽  
pp. 330-336
Author(s):  
Apiradee Sukmilin ◽  
◽  
Ratsamee Sangsirimongkolying ◽  

This research studied the possibility of using ozone to remove iron from groundwater. The optimum conditions were investigated using a Box-Behnken experiment design with statistical analysis by response surface technique. The three parameters investigated, pH (6.0-8.0), hardness (300-500 mg/L as CaCO3) and removal time (10 to 60 min) were independent parameters of iron removal. Data was examined for optimal conditions and included main effects and their interactions. Analysis of variance indicated that the proposed quadratic model successfully interpreted the experimental data with a coefficient of determination (R2) of 98.83% and adjusted R2 of 96.72%. Through this model, it could predict the iron removal efficiency under variable conditions. Furthermore, the optimum conditions were pH 6.99, hardness of 300 mg/L as CaCO3, and 10 min of reaction time. The predicted iron removal efficiency obtained from the model under the optimum conditions was 99.00%. The experiment confirmed that the optimum condition which validated the model’s accuracy of iron removal efficiency was 98.45%. The results showed that ozone can remove iron from groundwater.

2021 ◽  
Vol 45 (4) ◽  
pp. 273-280
Author(s):  
Raju Kalakuntala ◽  
Srinath Surnani

The performance of heteropoly acid i.e., Tungstan phosphoric acid for the synthesis of butyl propionate at optimized conditions. Effect on conversion and yield of propionic acids using the Response Surface Methodology (RSM) were evaluated by different process parameters including catalyst loading, alcohol/acid molar ratio. There were no external and internal mass transmission limits. A quadratic model acquired by the variance study (ANOVA) has been shown to view experimental data successfully with the regression (R2 = 0.94 and R2 = 0.942) coefficients approaching to unity. The pseudo homogeneous kinetic model (PH) validated with experimental data to determine kinetic parameters i.e., activation energy (45.97 kJ/mol) and frequent factor (91319 L/mol-min).


2014 ◽  
Vol 875-877 ◽  
pp. 1121-1126
Author(s):  
Nisakorn Somsuk ◽  
Onuma Kosanan ◽  
Chitlada Maimun ◽  
Pongtiwa Pongpanich

This paper aims to determine the optimum conditions in Chrome plating process for ABS products by using laboratory-scale experimental design, and taking a company in Chrome plating industry as a case study. This study is composed of two main parts; 1) screening design using a 2-level factorial design to find the few significant factors from a list of potential ones, and 2) analysis for the optimum levels of the factors using a 3-level factorial design and response surface methodology. The response used is the percentage of defects found in plated brass. The results of the study found that screening factor is able to reduce number of the factors from 6 to 4. Then the finding of conducting 3-level factorial design is that four factors significantly affect the response of percentage of defects found in brass specimen, at the 5% significant level. By using response surface method provides the Quadratic model which shows the relationship between four factors on the response. The information as appropriate factor levels in laboratory-scale experimental will be as a guideline for this company to reduce the amount of produced defect and to improve the surface quality of Chrome plating.


2017 ◽  
Vol 19 (2) ◽  
pp. 67-71 ◽  
Author(s):  
Ha Manh Bui

Abstract The COD removal efficiency from an instant coffee processing wastewater using electrocoagulation was investigated. For this purpose, the response surface methodology was employed, using central composing design to optimize three of the most important operating variables, i.e., electrolysis time, current density and initial pH. The results based upon statistical analysis showed that the quadratic models for COD removal were significant at very low probability value (<0.0001) and high coefficient of determination (R2 = 0.9621) value. The statistical results also indicated that all the three variables and the interaction between initial pH and electrolysis time were significant on COD abatement. The maximum predicted COD removal using the response function reached 93.3% with electrolysis time of 10 min, current density of 108.3 A/m2 and initial pH of 7.0, respectively. The removal efficiency value was agreed well with the experimental value of COD removal (90.4%) under the optimum conditions.


2021 ◽  
Author(s):  
M.A. Olivares-Ramírez ◽  
Leticia López-Zamora ◽  
M.J. Peña-Juárez ◽  
E.J. Gutiérrez-Castañeda ◽  
J.A. Gonzalez-Calderon

Abstract The present work shows the implementation of the Response Surface Methodology (RSM), fed by an experimental Central Composite Design (CCD) to find the conditions that allow maximizing the inhibition of the microorganism Staphylococcus aureus with nanoparticles of TiO2 silanized with 3-Aminopropyltriethoxysilane (APTES) and doped with Ag. In addition, Poly(lactic) acid composites were prepared with these Ag/TiO2 nanoparticles with the aim to confer their antimicrobial effect. The independent variables considered were pH, AgNO3/TiO2 ratio (% w/w), and TiO2 nanoparticles concentration (g/250 mL), and as the variable of response, the length of the diameter of the halo or zone of inhibition presented by the microorganism (mm). Statistical analysis found that maximization of S. aureus inhibition occurs at intermediate levels with a value of 10 for pH and 5 g of TiO2 solids, while for the concentration of AgNO3 high levels are required, greater than 10% w/w. Likewise, the statistical significance was determined using the Student's t-test and the p-value; it was found that the significant effect corresponds to the concentration of AgNO3, so a second experimental CCD design equirradial with two factors was considered, estimating AgNO3 concentration and TiO2 amount, the pH at constant 10 value. The second experimental design indicated that maximization in S. aureus inhibition occurs at an AgNO3 concentration between 20-25% w/w with high amounts of TiO2 solids (7-8 g), with a resulting zone of inhibition between 26-28 mm. The quadratic model obtained, which represents the relationship between the length of the zone of inhibition with the variables considered, shows an adjustment of experimental data with a coefficient of determination (R2) of 0.82.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
C. K. Venil ◽  
V. Mohan ◽  
P. Lakshmanaperumalsamy ◽  
M. B. Yerima

An indigenous bacterium, Bacillus REP02, was isolated from locally sourced chromium electroplating industrial effluents. Response surface methodology was employed to optimize the five critical medium parameters responsible for higher % Cr2+ removal by the bacterium Bacillus REP02. A three-level Box-Behnken factorial design was used to optimize K2HPO4, yeast extract, MgSO4, NH4NO3, and dextrose for Cr2+ removal. A coefficient of determination (R2) value (0.93), model F-value (3.92) and its low P-value (F<0.0008) along with lower value of coefficient of variation (5.39) indicated the fitness of response surface quadratic model during the present study. At optimum parameters of K2HPO4 (0.6 g L−1), yeast extract (5.5 g L−1), MgSO4 (0.04 g L−1), NH4NO3 (0.20 g L−1), and dextrose (12.50 g L−1), the model predicted 98.86% Cr2+ removal, and experimentally, 99.08% Cr2+ removal was found.


2017 ◽  
Vol 76 (2) ◽  
pp. 323-336 ◽  
Author(s):  
Muhammad Z. Ahamd ◽  
S. Ehtisham-ul-Haque ◽  
Numrah Nisar ◽  
Khizar Qureshi ◽  
Abdul Ghaffar ◽  
...  

The present study was conducted to degrade and detoxify 2-chlorophenol (2-CP) under UV irradiation in the presence of titanium dioxide (TiO2) and hydrogen peroxide (H2O2). The treatment efficiency was evaluated on the basis of degradation and cytotoxicity reduction as well as biochemical oxygen demand (BOD), chemical oxygen demand (COD) and total organic carbon (TOC) removal. The process variables such as TiO2, pH, UV irradiation time and H2O2 were optimized. Central composite design in combination with response surface methodology was employed to optimize the process variables. A quadratic model was proposed to predict the treatment efficiency and analysis of variance was used to determine the significance of the variables. The correlation between the experimental and predicted degradation was confirmed by the F and P values (&lt;0.05). The coefficient of determination (R2 = 0.99) were high enough to support the validity of developed model. At optimized conditions, up to 92% degradation of 2-CP was achieved with 3.5 × 10−4 s−1 rate constant. Significant reductions in BOD, COD and TOC values were also achieved. Cytotoxicity was evaluated using bioassays and it was observed that UV/TiO2/H2O2 reduced the cytotoxicity considerably. It is concluded that UV/TiO2/H2O2 could possibly be used to detoxify 2-CP in industrial wastewater.


Processes ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 588
Author(s):  
Poh Gaik Law ◽  
Noor Haida Sebran ◽  
Ashraf Zin Zawawi ◽  
Azlan Shah Hussain

Statistical-based study using response surface methodology (RSM) was conducted to study the effects of process parameters towards biomass hydrogenation. Using Malaysian oil palm empty fruit bunches (EFB) fibres as feedstock, the central composite design (CCD) technique was employed and 18 runs were generated by CCD when four parameters (mass ratio of binary catalyst, hydrogen pressure, temperature and mass ratio of catalyst to feedstock) were varied with two center points to determine the effects of process parameters and eventually to get optimum ethylene glycol (EG) yield. RSM with quadratic function was generated for biomass hydrogenation, indicating all factors except temperature, were important in determining EG yield. Analysis of variance (ANOVA) showed a high coefficient of determination (R2) value of >0.98, ensuring a satisfactory prediction of the quadratic model with experimental data. The quadratic model suggested the optimum EG yield should be >25 wt.% and the EG yield results were successfully reproduced in the laboratory.


2012 ◽  
Vol 622-623 ◽  
pp. 508-512
Author(s):  
Jian Liu ◽  
Shu Ming Wen ◽  
Qi Cheng Feng ◽  
Yu Chen ◽  
Shao Jun Bai ◽  
...  

The study aims to remove copper from a pyrite cinders using chlorination roasting and optimizing the roasting parameters through response surface methodology (RSM). After a series of experiments, a quadratic model was suggested by RSM to correlate the variables to the copper volatilization ratio. The results indicate that the model is in good agreement with the experimental data and the dosage of chlorinating agent and roasting temperature play a key role in improving the volatilization ratio. The optimum conditions for remove copper from the cinders were identified as chlorinating agent dosage at 5%, roasting temperature at 1155.05 °C and roasting time of 10 minutes; under such a condition, an average copper volatilization ratio of 95.16% was achieved from the cinder.


2014 ◽  
Vol 17 (3) ◽  
pp. 213-220 ◽  
Author(s):  
Virginia Coimbra Zuvanov ◽  
Edwin Elard Garcia-rojas ◽  
Clitor Júnior Fernandes de Souza ◽  
Eliana da Silva Gulão ◽  
Luciano José Barreto Pereira

In this work, the optimization process of interpolymeric complexes formation between lactalbumin and the polysaccharides xanthan gum and pectin was studied in order to define the optimum conditions for the complexes formation. For the experimental design, response surface methodology (RSM) for three independent variables was used. The optimum conditions for the complexes formation between lactalbumin and xanthan gum were: pH 6.6, NaCl concentration of 0.6 mol/L and xanthan gum concentration 0.083% w/v. And for the complexes formed between pectin and lactalbumin the conditions were: pH 6.6, NaCl concentration of 0.25 mol/L and pectin concentration of 0.113% w/v. The best fitted model for the experimental data was that corresponding to the complex xanthan gum-lactalbumin, whose coefficient of determination (R²) was 0.97.


2017 ◽  
Vol 69 (3) ◽  
pp. 387-392 ◽  
Author(s):  
Nor Syahirah Mohamad ◽  
Salmiah Kasolang

Purpose An optimized model is often deployed to reduce trial and error in experimental approach and obtain the multi-variant correlation. In this study, response surface methodology (RSM), namely, Box–Behnken design (BBD) approach, has been used to optimize the characterization of lubricant with additives. BBD is based on multivariate analysis whereby the effects of different parameters are considered simultaneously. It is a non-linear system which is more representative of the actual phenomenon. This study aims to investigate the effect of three independent variables, namely, speed, load and concentration of TiO2, on the coefficient of friction (CoF). Design/methodology/approach RSM was applied to get the multiplicity of the self-determining input variables and construct mathematical models. Mathematical models were established to predict the CoF and to conduct a statistical analysis of the independent variables’ interactions on response surface using Minitab 16.0 statistical software. Three parameters were regulated: speed (X1), load (X2) and concentration of TiO2 (X3). The output measured was the CoF. Findings The result obtained from BBD has shown that the most influential parameter was speed, followed by concentration of TiO2 nanoparticles and then normal load. Analysis of variance indicated that the proposed experiment from the quadratic model has successfully interpreted the experimental data with a coefficient of determination R2 = 0.9931. From the contour plot of BBD, the optimization zone for interacting variables has been obtained. The zone indicates two regions of lower friction values (<0.04): concentration between 0.5 to 1.0 Wt.% for a speed range of 1,000 to 2,000 rpm, and load between 17 to 20 kg for a speed in the range of 1,200 to 1,900 rpm. The optimized condition shows that the minimum value of CoF (0.0191) is at speed of 1,782 rpm, load of 20 kg and TiO2 concentration of 1.0 Wt.%. Originality/value In general, it has been shown that RSM is an effective and powerful tool in experimental optimization of multi-variants.


Sign in / Sign up

Export Citation Format

Share Document