scholarly journals Stability and Toxicity Test of Angkak Pigment Powder from Sago Hampas- Rice Flour Substrate as Natural Dyes

2021 ◽  
Vol 5 (1) ◽  
pp. 38-49
Author(s):  
Dian Pramana Putra ◽  
Novelina Novelina ◽  
Alfi Asben

Sago hampas is waste from processing sago starch. Sago hampas is generally thrown away without any further treatment. Sago hampas contain nutrients that can be used as a substrate for fermentation of angkak. The study aims to determine the stability and toxicity of angkak pigment powder from sago hampas-rice flour substrate. The study used exploratory research design through experiments in the laboratory. This study used the UV-vis spectrophotometer method in observing the stability of the Angkak powder pigment and the brine shrimps method of angkak pigment powder toxicity test. The results showed that the level of solubility of angkak pigment powder will increase at higher temperatures. Stability of angkak pigment powder tends to decrease with longer heating, the higher of heating temperature and the longer of irradiation. Angkak pigment powder are more stable at neutral and alkaline pH compared with acidic pH.  And it is not toxic to experimental animals with LC50 value of angkak pigment powder of 2,897.05 ppm. The conclusion of this study is that temperature affects the intensity of the angkak pigment. Angkak is unstable along with heating time, heating temperature and longer of irradiation.

Author(s):  
Somayeh Heydari ◽  
Roya Rezaei ◽  
Gholam Hossein Haghayegh

Saffron (Crocus sativus) has cyanic color flowers with major colorant of anthocyanin. Attractive color and functional properties of anthocyanins make them a good substitute for synthetic pigments in the food industry. These natural soluble water colorants are rather unstable and influenced by final processing treatment. The drying process is critical to the stability of saffron petals anthocyanins. Four different dehydration methods were evaluated: traditional method (at room temperature and under the sun); dehydration with electrical oven at different temperatures; and dehydration with microwave at different powers. The results showed that the highest amount of anthocyanin was obtained when saffron petals treated by traditional methods (at room temperature and under the sun). According to the results, the stability of saffron petals anthocyanins gradually accessed with increase of the heating temperature and decrement of heating time until 100 °C. However, heated at 120 and 140 °C, the anthocyanins could break down, and their residual amounts declined within 20 min and 10 min, respectively. The results suggested that saffron petals anthocyanins tended to degrade at high temperatures (>100 °C). Between these methods, drying at room temperature and drying with microwave at 900 W obtained the highest and the lowest results respectively.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 842
Author(s):  
Wenming Jin ◽  
Jianhao Yu ◽  
Zhiqiang Zhang ◽  
Hongjie Jia ◽  
Mingwen Ren

Contact solution treatment (CST) of Al–Zn–Mg–Cu alloys can shorten solution time to within 40 s in comparison with 1800 s with traditional solution treatment using a heating furnace. Heating temperature is the key factor in solution treatment. Considering the short heating time of CST, the ultra-high solution temperature over 500 °C of Al–Zn–Mg–Cu alloys was studied in this work. The effects of solution temperatures on the microstructures and the mechanical properties were investigated. The evolution of the second phases was explored and the strengthening mechanisms were also quantitatively evaluated. The results showed that solution time could be reduced to 10 s with the solution temperature of 535 °C due to the increasing dissolution rate of the second phase and the tensile strength of the aged specimen could reach 545 MPa. Precipitation strengthening was the main strengthening mechanism, accounting for 75.4% of the total strength. Over-burning of grain boundaries occurred when the solution temperature increased to 555 °C, leading to the deterioration of the strength.


2013 ◽  
Vol 788 ◽  
pp. 57-60
Author(s):  
Chun Cao ◽  
Chun Dong Zhu ◽  
Chen Fu

Warm pressing forming technology has been gradually applied to the forming of automotive friction materials. How to ensure product performance to achieve the target at the same time achieve the maximum energy saving is the research focus of this study. In this paper, by using finite element method, the field of automotive friction materials in warm pressing forming was analyzed, reveals the relationship between the temperature field and the heating temperature/heating time. Furthermore, the energy consumption was analyzed and compared it with hot pressing forming process. The results will have significant guiding to the process optimization in warm pressing forming.


1980 ◽  
Vol 238 (1) ◽  
pp. F31-F36 ◽  
Author(s):  
J. P. Johnson ◽  
S. Green ◽  
J. H. Schwartz

The effects of changes in pH and addition of CO2/HCO3- on transepithelial phosphate transport were studied in turtle urinary bladder. Net mucosa-to-serosa flux of phosphate (JP) was determined as the difference between unidirectional 32P fluxes in the absence of transepithelial electrochemical gradients. With 5 mM phosphate in HCO3--free Ringer at pH 8.4, JP was 21.8 +/- 7.4 nmol . 8 cm-2 . h-1. There was a slight increase in JP with isohydric addition of 10 mM HCO3-. Addition of 5% CO2, which reduced pH to 7.3, did not affect JP. At pH 8.4, JP was not affected by ouabain or dinitrophenol and increased progressively as phosphate concentration was raised between 0.5 and 10 mM. At pH 6.2 in the absence of exogenous CO2 and HCO3-, JP was undectable. With 2.5 mM HCO3- and 5% CO2 at pH 6.5, JP was 61.3 +/- 16.0 and decreased to 30.6 +/- 1.6 nmol . 8 cm-2 . h-1 when pH was raised to 7.2 by increasing HCO3- to 10 mM. At pH 6.5 JP was inhibited by both ouabain and dinitrophenol. These results suggest that at acidic pH, JP results from the tranport of H2PO4-. The transport of H2PO4- is CO2 dependent and inhibited by ouabain and dinitrophenol. In contrast, at alkaline pH, JP results from the transport of HPO4(2-), which is neither CO2 dependent nor inhibited by ouabain or dinitrophenol.


Biopolymers ◽  
2016 ◽  
Vol 105 (10) ◽  
pp. 715-724 ◽  
Author(s):  
Zhengjian Lv ◽  
Alexey V. Krasnoslobodtsev ◽  
Yuliang Zhang ◽  
Daniel Ysselstein ◽  
Jean Christophe Rochet ◽  
...  
Keyword(s):  

2014 ◽  
Vol 638-640 ◽  
pp. 1531-1535 ◽  
Author(s):  
Jin Bao Guo ◽  
Lin Liu ◽  
Qiang Wang

In order to solve the shortcomings of traditional methods of concrete curing in winter, proposed self-regulating heating cable new concrete curing methods. Several aspects were considered, about the heating cable length and heating time, heating temperature. According to energy conservation, heating and heat dissipation balance, derived formulas of heating cable normal use length and minimum. As conclusions is shown, first, the normal length design can controlled better heating temperature, it use the cable length and heating time, heating temperature two parameters to control the other parameters. Second, it is better heating efficiency, can be the overall warming state quickly. In addition, when the concrete pouring temperature is above 10 °C, it is not need additional heating, and it can choose minimum length design formula.


Author(s):  
Peter F. Baumann ◽  
Lucas Sendrowski

Large recycled high-density polyethylene (HDPE) structural members, difficult to manufacture by extrusion processes, have been created by the hot plate welding of simple plastic lumber sections. Hot plate welding generates better joint strength than any other welding method currently employed in plastic manufacturing. However, to achieve the desired temperature of the thick plate to melt the polymer uniformly, the process needs a high amount of heat energy requiring furnace (or resistance) heating of a considerable mass. A new method which could combine the heating element and a thin plate into one source could be more efficient in terms of heat loss and thus energy used. The premise of this investigation is to replace the hot plate with a very thin piece of high resistance nickel-chromium alloy ribbon to localize the application of heat within a plastic weld joint in order to reduce energy loss and its associated costs. This resistance ribbon method uses electrical current to reach an adequate temperature to allow for the welding of the HDPE plastic. The ribbon is only slightly larger than the welding surface and very thin to reduce the loss of excess heat through unused surface area and thick sides. The purpose of this project was to weld recycled high-density polyethylene (HDPE) using resistance welding and to match the tensile strength results considered acceptable in industry for hot plate welding, that is, equal to or greater than 80% of the base material strength. Information obtained through literature review and previous investigations in our laboratories established welding (heating) temperature and time as testing factors. Designed experimentation considered these factors in optimizing the process to maximize the weld tensile strength. A wide-ranging full-factorial experimental design using many levels was created for the initial testing plan. Tensile strengths obtained after welding under the various condition combinations of weld temperature and time revealed a region of higher strength values in the response surface. After the wide-range initial testing, the two control parameters, heating temperature and heating time, were ultimately set up in a focused Face Centered Cubic (FCC) Response Surface Method (RSM) testing design and the tensile strength response was then analyzed using statistical software. The results obtained indicated a strong correlation between heating time and heating temperature with strength. All welded samples in the final testing set exhibited tensile strength of over 90% base material, meeting the goal requirements. A full quadratic equation relationship for tensile strength as a function of welding time and temperature was developed and the maximum tensile strength was achieved when using 280°C for 60 seconds.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
V. M. García-Orozco ◽  
C. E. Barrera-Díaz ◽  
G. Roa-Morales ◽  
Ivonne Linares-Hernández

The degradation of aqueous solutions containing phenolphthalein was carried out using ozone and electrochemical processes; the two different treatments were performed for 60 min at pH 3, pH 7, and pH 9. The electrochemical oxidation using boron-doped diamond electrodes processes was carried out using three current density values: 3.11 mA·cm−2, 6.22 mA·cm−2, and 9.33 mA·cm−2, whereas the ozone dose was constantly supplied at 5±0.5 mgL−1. An optimal degradation condition for the ozonation treatment is at alkaline pH, while the electrochemical treatment works better at acidic pH. The electrochemical process is twice better compared with ozonation.


2010 ◽  
Vol 2 (3) ◽  
pp. 161-166 ◽  
Author(s):  
Mudasir Mudasir ◽  
Mugiyanti Mugiyanti ◽  
Ngatidjo Hadipranoto

An analytical method for the spectrophotometric determination of some phenolic compounds, i.e.: pyrocathecol and pyrogallol based on their redox reaction with iron(III)-phenanthroline complex has been developed. These two compounds, in appropriate conditions, reduce iron(III)-phenanthroline complex to yield very stable and color-intense complex of iron(II)-phenanthroline, [Fe(phen)2]2+, whose concentration is equivalent to the amount of pyrocathecol or pyrogallol in the solution, and is easily detected by spectrophotometric method. Some parameters influencing the sensitivity of the determination were optimized. These included maximum absorption wavelength, pH of the solution, time and temperature of heatingand reagent to analyte minimum mole-ratio. Using the optimum conditions obtained, the analytical performance of the method was examined and the developed method was then applied to analyzed pyrocathecol and pyrogallol contents in several river water of Yogyakarta, Indonesia. Result of the study showed that the optimum conditions for the determination of pyrocathecol are as follows: maximum absorption wavelength (lmax) at 510 nm, pH of the solution = 4, heating time = 120 min, heating temperature = 70 0C and the minimum mole ratio of reagent to analyte is 8. On the other hand, the optimum conditions for the determination of pyrogallol are as follows: maximum absorption wavelength (lmax) at 510 nm, pH of the solution = 5, heating time = 90 min, heating temperature = 90 0C and the minimum mole ratio of reagent to analyte is 7. At the corresponding conditions of analysis, calibration curves for pyrocathecol and pyrogallol are linear in the range concentration of 0.00 - 0.16 ppm and 0.00 - 0.24 ppm, respectively. The correlation coefficients for both compounds were found to be higher than 0.998 and the detection limits went down below 0.07 ppm. It has been demonstrated that the developed method can be applied for the determination of pyrocathecol and pyrogallol contents in natural samples.   Keywords: Spectrophotometry, phenolic compounds, 1,10-phenanthroline, redox reaction


Sign in / Sign up

Export Citation Format

Share Document