scholarly journals Mesenchymal stem cells: As a multi-target cell therapy for clearing β-amyloid deposition in Alzheimer’s disease

BIOCELL ◽  
2022 ◽  
Vol 46 (3) ◽  
pp. 583-592
Author(s):  
RUXIN ZHANG ◽  
CHENGGANG LI ◽  
RUOCHEN DU ◽  
YITONG YUAN ◽  
BICHUN ZHAO ◽  
...  
Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1059 ◽  
Author(s):  
Chiara A. Elia ◽  
Matteo Tamborini ◽  
Marco Rasile ◽  
Genni Desiato ◽  
Sara Marchetti ◽  
...  

Bone marrow Mesenchymal Stem Cells (BM-MSCs), due to their strong protective and anti-inflammatory abilities, have been widely investigated in the context of several diseases for their possible therapeutic role, based on the release of a highly proactive secretome composed of soluble factors and Extracellular Vesicles (EVs). BM-MSC-EVs, in particular, convey many of the beneficial features of parental cells, including direct and indirect β-amyloid degrading-activities, immunoregulatory and neurotrophic abilities. Therefore, EVs represent an extremely attractive tool for therapeutic purposes in neurodegenerative diseases, including Alzheimer’s disease (AD). We examined the therapeutic potential of BM-MSC-EVs injected intracerebrally into the neocortex of APPswe/PS1dE9 AD mice at 3 and 5 months of age, a time window in which the cognitive behavioral phenotype is not yet detectable or has just started to appear. We demonstrate that BM-MSC-EVs are effective at reducing the Aβ plaque burden and the amount of dystrophic neurites in both the cortex and hippocampus. The presence of Neprilysin on BM-MSC-EVs, opens the possibility of a direct β-amyloid degrading action. Our results indicate a potential role for BM-MSC-EVs already in the early stages of AD, suggesting the possibility of intervening before overt clinical manifestations.


2020 ◽  
Vol 54 (9) ◽  
pp. 883-891
Author(s):  
Bok-Nam Park ◽  
Jang-Hee Kim ◽  
Tae Sung Lim ◽  
So Hyun Park ◽  
Tae-Gyu Kim ◽  
...  

Objective: We evaluated the effects of bone marrow–derived mesenchymal stem cells in a model of Alzheimer’s disease using serial [18F]Florbetaben positron emission tomography. Methods: 3xTg Alzheimer’s disease mice were treated with intravenously injected bone marrow–derived mesenchymal stem cells, and animals without stem cell therapy were used as controls. Serial [18F]Florbetaben positron emission tomography was performed after therapy. The standardized uptake value ratio was measured as the cortex standardized uptake value divided by the cerebellum standardized uptake value. Memory function and histological changes were observed using the Barnes maze test and β-amyloid-reactive cells. Results: Standardized uptake value ratio decreased significantly from day 14 after stem cell administration in the bone marrow–derived mesenchymal stem cells–treated group ( n = 28). In contrast, there was no change in the ratio in control mice ( n = 25) at any time point. In addition, mice that received bone marrow–derived mesenchymal stem cell therapy also exhibited significantly better memory function and less β-amyloid-immunopositive plaques compared to controls. Conclusion: The therapeutic effect of intravenously injected bone marrow–derived mesenchymal stem cells in a mouse model of Alzheimer’s disease was confirmed by β-amyloid positron emission tomography imaging, memory functional studies and histopathological evaluation.


2020 ◽  
Vol 20 (9) ◽  
pp. 770-781 ◽  
Author(s):  
Poornima Sharma ◽  
Anjali Sharma ◽  
Faizana Fayaz ◽  
Sharad Wakode ◽  
Faheem H. Pottoo

Alzheimer’s disease (AD) is the most prevalent and severe neurodegenerative disease affecting more than 0.024 billion people globally, more common in women as compared to men. Senile plaques and amyloid deposition are among the main causes of AD. Amyloid deposition is considered as a central event which induces the link between the production of β amyloid and vascular changes. Presence of numerous biomarkers such as cerebral amyloid angiopathy, microvascular changes, senile plaques, changes in white matter, granulovascular degeneration specifies the manifestation of AD while an aggregation of tau protein is considered as a primary marker of AD. Likewise, microvascular changes, activation of microglia (immune defense system of CNS), amyloid-beta aggregation, senile plaque and many more biomarkers are nearly found in all Alzheimer’s patients. It was seen that 70% of Alzheimer’s cases occur due to genetic factors. It has been reported in various studies that apolipoprotein E(APOE) mainly APOE4 is one of the major risk factors for the later onset of AD. Several pathological changes also occur in the white matter which include dilation of the perivascular space, loss of axons, reactive astrocytosis, oligodendrocytes and failure to drain interstitial fluid. In this review, we aim to highlight the various biological signatures associated with the AD which may further help in discovering multitargeting drug therapy.


2021 ◽  
Author(s):  
Mohamed Hosney ◽  
Alaa Sakraan ◽  
Aman Asaad ◽  
Mervat El-Deftar ◽  
Emad Elzayat

Abstract Alzheimer's disease (AD) is the most prevalent type of dementia characterized by its progression, neurobehavioral and neuro-pathological characteristics, leading to a diverse neuronal loss. Adipose-derived mesenchymal stem cells (ADMSCs) have previously proved potential role in preventing the pathogenesis of several neurodegenerative disorders, so regarded as a promising new approach for AD regenerative therapy. Taurine was found to enhance stem cell activation and propagation yielding a higher concentration of neural progenitors and stem cells, and aid to lessen the number of activated microglia leading to down-regulated inflammation in vitro. The present study aimed to investigate the possible therapeutic potential of ADMSCs and/or taurine in treating AD rat model. It was planned to include three successive phases; induction, withdrawal, and therapeutic phases. Fifty male Wistar rats were divided into 2 main groups: control (C) group and AD model group. Behavioral changes, as manifested by the T-Maze experiment, had been recorded. β-amyloid levels had been measured in brain homogenate and serum by ELISA. Oxidative stress marker (MDA), and anti-oxidant enzymes activity (SOD, GSH, and CAT) in brain, as well as serum acetylcholine esterase activity were spectrophotometrically determined. Pro-apoptotic (p53 and Bax) and anti-apoptotic (Bcl2) gene expression in brain were evaluated using RT-qPCR. The histopathological alterations in brain tissues were also observed. The present study proved the potential therapeutic ability of ADMSCs and/or taurine in alleviating the adverse pathological changes induced by AlCl3 in AD rat model at both physiological and molecular levels.


IBRO Reports ◽  
2019 ◽  
Vol 6 ◽  
pp. S478
Author(s):  
Maria Florencia Zappa Villar ◽  
Juliette Lopez Hanotte ◽  
Joaquin Pardo ◽  
Gustavo Ramon Morel ◽  
Mariana Gabriela Garcia ◽  
...  

Life Sciences ◽  
2020 ◽  
Vol 246 ◽  
pp. 117405 ◽  
Author(s):  
Lu Zhang ◽  
Zhi-fang Dong ◽  
Jie-yuan Zhang

2006 ◽  
Vol 14 (7S_Part_12) ◽  
pp. P668-P668
Author(s):  
Anthony A. Oliva ◽  
Benard Baumel ◽  
Mark Brody ◽  
Carmen Perez ◽  
Cristine Chisholm ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document