scholarly journals Experimental Investigation of Flame Structure and Combustion Limit During Premixed Methane/Air Jet Flame and Sidewall Interaction

2021 ◽  
Vol 118 (1) ◽  
pp. 37-52
Author(s):  
Ying Chen ◽  
Jianfeng Pan ◽  
Qingbo Lu ◽  
Yu Wang ◽  
Chenxin Zhang
2013 ◽  
Vol 135 (7) ◽  
Author(s):  
Kuo C. San ◽  
Hung J. Hsu ◽  
Shun C. Yen

The target of this study is to promote combustion capability using a novel rifled nozzle which was set at the outlet of a conventional (unrifled) combustor. The rifled nozzle was utilized to adjust the flow swirling intensity behind the traditional combustor by changing the number of rifles. The rifle mechanism enhances the turbulence intensity and increases the mixing efficiency between the central-fuel jet and the annular swirled air-jet by modifying the momentum transmission. Specifically, direct photography, Schlieren photography, thermocouples, and a gas analyzer were utilized to document the flame behavior, peak temperature, temperature distribution, combustion capability, and gas-concentration distribution. The experimental results confirm that increasing the number of rifles and the annular swirling air-jet velocity (ua) improves the combustion capability. Five characteristic flame modes—jet-flame, flickering-flame, recirculated-flame, ring-flame and lifted-flame—were obtained using various annular air-jet and central fuel-jet velocities. The total combustion capability (Qtot) increases with the number of rifles and with increasing ua. The Qtot of a 12-rifled nozzle (swirling number (S) = 0.5119) is about 33% higher than that of an unrifled nozzle. In addition, the high swirling intensity induces the low nitric oxide (NO) concentration, and the maximum concentration of NO behind the 12-rifled nozzle (S = 0.5119) is 49% lower than that behind the unrifled nozzle.


Author(s):  
Ranjan S. Mehta ◽  
Anquan Wang ◽  
Michael F. Modest ◽  
Daniel C. Haworth

2015 ◽  
Vol 19 (1) ◽  
pp. 21-34 ◽  
Author(s):  
Amir Mardani ◽  
Sadegh Tabejamaat

In this paper, turbulent non-premixed CH4+H2 jet flame issuing into a hot and diluted co-flow air is studied numerically. This flame is under condition of the moderate or intense low-oxygen dilution (MILD) combustion regime and related to published experimental data. The modelling is carried out using the EDC model to describe turbulence-chemistry interaction. The DRM-22 reduced mechanism and the GRI2.11 full mechanism are used to represent the chemical reactions of H2/methane jet flame. The flame structure for various O2 levels and jet Reynolds numbers are investigated. The results show that the flame entrainment increases by a decrease in O2 concentration at air side or jet Reynolds number. Local extinction is seen in the upstream and close to the fuel injection nozzle at the shear layer. It leads to the higher flame entertainment in MILD regime. The turbulence kinetic energy decay at centre line of jet decreases by an increase in O2 concentration at hot Co-flow. Also, increase in jet Reynolds or O2 level increases the mixing rate and rate of reactions.


Author(s):  
Zhixuan Duan ◽  
Brendan Shaffer ◽  
Vincent McDonell ◽  
Georg Baumgartner ◽  
Thomas Sattelmayer

Flashback is a key operability issue for low emission premixed combustion systems operated on high hydrogen content fuels. Previous work investigated fuel composition impacts on flashback propensity and found that burner tip temperature was important in correlating flashback data in premixed jet flames. An enclosure around the jet flame was found to enhance the flame–burner rim interaction. The present study further addresses these issues using a jet burner with various geometric configurations and interchangeable materials. Systematic studies addressing the quantitative influence of various parameters such as tip temperature, burner material, enclosure size, and burner diameter on flashback propensity were carried out. A comprehensive overview of the flashback limits for all conditions tested in the current study as well as those published previously is given. The collective results indicate that the burner materials, tip temperature, and flame confinement play significant roles for flashback propensity and thus help explain previous scatter in flashback data. Furthermore, the present work indicates that the upstream flame propagation during flashback is affected by the burner material. The material with lower thermal conductivity yields larger flashback propensity but slower flame regression inside the tube. These observations can be potentially exploited to minimize the negative impacts of flashback in practical applications.


2008 ◽  
Vol 2008 ◽  
pp. 1-7 ◽  
Author(s):  
N. J. Moore ◽  
J. L. McCraw ◽  
K. M. Lyons

The mechanisms that cause jet-flame blowout, particularly in the presence of air coflow, are not completely understood. This work examines the role of fuel velocity and air coflow in the blowout phenomenon by examining the transient behavior of the reaction zoneat blowout. The results of video imaging of a lifted methane-air diffusion flame at near blowout conditions are presented. Two types of experiments are described. In the first investigation, a flame is established and stabilized at a known, predetermined downstream location with a constant coflow velocity, and then the fuel velocity is subsequently increased to cause blowout. In the other, an ignition source is used to maintain flame burning near blowout and the subsequent transient behavior to blowout upon removal of the ignition source is characterized. Data from both types of experiments are collected at various coflow and jet velocities. Images are used to ascertain the changes in the leading edge of the reaction zone prior to flame extinction that help to develop a physically-based model to describe jet-flame blowout. The data report that a consistent predictor of blowout is the prior disappearance of the axially oriented flame branch. This is witnessed despite a turbulent flames' inherent variable behavior. Interpretations are also made in the light of analytical mixture fraction expressions from the literature that support the notion that flame blowout occurs when the leading edge reaches the vicinity of the lean-limit contour, which coincides approximately with the conditions for loss of the axially oriented flame structure.


2018 ◽  
Vol 27 (4) ◽  
pp. 422-439
Author(s):  
Y. Zhang ◽  
P. Xu ◽  
B. Li ◽  
X. Yu ◽  
G. Lorenzini ◽  
...  
Keyword(s):  
Air Jet ◽  

Author(s):  
James D. Kribs ◽  
Andrew R. Hutchins ◽  
William A. Reach ◽  
Tamir S. Hasan ◽  
Kevin M. Lyons

The purpose of this study is to observe the effects of hydrogen enrichment on the stability of lifted, partially premixed, methane flames. Due to the relatively large burning velocity of hydrogen-air flames when compared to that of typical hydrocarbon-air flames, hydrogen enriched hydrocarbon flames are able to create stable lifted flames at higher velocities. In order to assess the impact of hydrogen enrichment, a selection of studies in lifted and attached flames were initiated. Experiments were performed that focused on the amount of hydrogen needed to reattach a stable, lifted methane jet flame above the nozzle. Although high fuel velocities strain the flame and cause it to stabilize away from the nozzle, the high burning velocity of hydrogen is clearly a dominant factor, where as the lifted position of the flame increased, the amount of hydrogen needed to reattach the flame increased at the same rate. In addition, it was observed that as the amount of hydrogen in the central jet increased, the change in flame liftoff height increased and hysteresis became more pronounced. It was found that the hysteresis regime, where the flame could either be stabilized at the nozzle or in air, shifted considerably due to the presence of a small amount of hydrogen in the fuel stream. The effects of the hydrogen enrichment, however small the amount of hydrogen compared to the overall jet velocity, was the major factor in the flame stabilization, even showing discernible effects on the flame structure.


Author(s):  
Preetam Sharma ◽  
Vaibhav Arghode

This study deals with an experimental investigation of a low emission liquid fuelled (ethanol) reverse cross-flow combustor. This investigation is carried out to cater to the need of burning liquid fuels (including alternative fuels) with minimum emissions in gas turbine engines used for both aircraft and land based power generation applications using modern combustion technologies. In the present combustor design, the air inlet and the exhaust ports are located on the same side (and hence the name reverse-flow) whereas the liquid fuel is injected directly into the strong cross-flow of the air using a small diameter round tube to aid fuel atomization. Hence, a conventional atomization system is absent in the investigated combustor. The reverse-flow configuration allows effective internal product gas recirculation to facilitate the preheating and dilution of the oxidizer stream and stabilization of a distributed reaction zone. This apparently suppresses near stoichiometric reactions and hot spot regions resulting in low pollutant (NOx and CO) emissions. In the present case, the heat load is varied (keeping a constant air flow rate) from 3.125 kW to 6.25 kW which results in the thermal intensity variation from 19 MW/m3-atm to 39 MW/m3-atm. Two different tubes with internal diameters (dfuel) of 0.5 mm and 0.8 mm are used for injection of liquid fuel into the cross flow of air. The combustor was also tested in premixed-prevaporized (PP) mode with ethanol for benchmarking. The combustion process was found to be stable with NOx emissions of 1.6 ppm (premixed-prevaporized), 8 ppm (dfuel = 0.5 mm), 9 ppm (dfuel = 0.8 mm). The CO emissions were 5 ppm (premixed-prevaporized), ∼100 ppm (dfuel = 0.5, 0.8 mm), at atmospheric pressure operation (corrected to 15% O2) and ϕ = 0.7, Tadiabatic ∼1830 K. Reaction zone positioning inside the combustor was investigated using OH* chemiluminescence imaging and global flame pictures, and the same was found to be located in the vicinity of the air jet.


1984 ◽  
Vol 8 (3) ◽  
pp. 126-132
Author(s):  
N.W.M. Ko

This paper describes an experimental investigation of a jet of Mach number 0.5 which is partially interrupted by an 180° sharp edge. Detailed Schlieren and pressure spectral measurements of the jet with the sharp edge located at different locations inside the jet have indicated the presence of the basic jet coherent structure, the axisymmetrical and azimuthal constituents and the resonances set up by the interaction of the jet flow and sharp edge. The resonances arc due not only to the interaction of the initial shear layer with the acoustic feedback from the basic coherent structure but also with the acoustic feedback from the wake vortices set up in the wake flow behind the sharp edge. For the former, dependence of the level of resonance on location of the sharp edge has also been found.


Sign in / Sign up

Export Citation Format

Share Document