scholarly journals A Study to Establish Correlation Between Rebound Value and Compressive Strength of Concrete Using Materials Available Locally in Nagpur

2021 ◽  
Vol 9 (10) ◽  
pp. 1-6
Author(s):  
Aman Raj ◽  
Pramod Deshmukh ◽  
Pradeepa. S

This study has been taken to investigate the exact rebound-strength relationship of different grades of concrete, as the curves generated for traditional hammers are outdated. Using the material available in the Nagpur region, cube specimens were cast and tested as per IS:516-1959 [1]. Several sets were cast with varying cement contents, decided by mix design, to give a strength range of 10 to 50 Mpa. However, for this study, the Target Mean Strength Standard Deviation factor is not considered. We tested these sets for compressive strengths; each specimen was checked for rebound value for compressive Strength, each specimen was checked for rebound value on four faces. Thus, for each specimen, data for rebound value and Compressive Strength is available. Using this data, a curve for Compressive Strength and rebound value was plotted. The curve generated indicated that the strengths obtained for the same rebound value are higher than that using the traditional curve. There is an increase of about 47% up to a strength of 21 Mpa. From 21 to 38 Mpa, this increase is almost constant to about 30%. From this point forward, the rate of increased Strength reduces by 25% and 14% at 40 Mpa and 45 Mpa, respectively.

2018 ◽  
Vol 4 (5) ◽  
pp. 1127
Author(s):  
Iman Mohammadi Bidsardareh ◽  
Mohammad Mohammadi

In Iran Concrete Code (ABA), the criteria for calculation of standard deviation (s) are comprehensive and holistic. However, if it would be determined separately for each geographical area, significant changes could occur due to the use of concrete as one of the common materials. This paper analyses the criteria and redefines the acceptance standards for concrete compressive strength in ABA using experimental data available in Kohgiluyeh and Boyer-Ahmad and Fars provinces. The main hypothesis of the study is that using the statistical analysis of the test specimens for three categories C21, C30 and C35 in various projects located in Kohgiluyeh and Boyer-Ahmad and Fars provinces, extracting standard deviations, mean and the compressive strength of the specimens and their comparison with ABA proposed relationships and values, it is possible to propose new amendments for these areas in line with economic savings in national and international projects. In this study using the quantitative Strategy, library - Internet studies, field studies and in cooperation with the concrete labs, required information for 4878 concrete specimens was collected from the above-mentioned areas. By analysing the acceptance regulations for the specimens based on ABA and comparing the standard deviation of these data with the formulas of the regulations, significant results were obtained for the standard deviation factor correction and finally some formulas were suggested for the acceptance of the concrete specimens.


Author(s):  
Muhammad Adil Khan ◽  
Asjad Javed ◽  
Mahboob Ali Choudhry

The most important property of concrete is its compressive strength, which is carried out after 28-days of proper curing of concrete. This test is affected by other factors like the condition of curing, water to cement ratio, method of transportation, handling of the concrete, extent of vibrations and quality of the ingredients of mix proportion. This research study is an attempt to develop a simple mathematical model, by using linear regression analysis to estimate the 28-day fc’ (Compressive Strength) of concrete from the test results carried out at early age. This simple linear equation develops a relationship of 28.5 hours. These results show that most of the predicted values of compressive strength, calculated via equations, lie within permissible range difference for compressive strength achieved by experimental method, which is clear indication of credibility of the equations obtained for compressive strength at different age of concrete. The results show that compressive strength of concrete increases with the increase in content of FA (Fly Ash) upto 30% replacement, and the compressive strength of the concrete starts decreasing beyond 30% FA substitution. This argument is totally in line with all the literature carried out for this research.


Author(s):  
Nanang Budi Setyawan ◽  
Fredy Kurniawan

Development era of globalization has resulted in increasing number of second-hand goods / waste that its existence can be a problem for life in the future. Many things are done in order to recycle paper cement in order to overcome this problem the existence of waste. One way is to use waste paper to be a part of the building. The purpose of this study, to determine the compressive strength and optimum density. Laboratory experimental method uses a variation of 10%, 20%, 30% and testing conducted in the form of compressive strength and density. From the test results obtained by the result of decrease in the compressive strength and density. In addition cellulose concrete mix design with variations determined that 10%, 20%, 30% resulted in a decrease in the compressive strength of concrete,


2021 ◽  
Vol 10 (3) ◽  
pp. e31510313341
Author(s):  
Ayrton Wagner dos Santos Gomes de Sá ◽  
Yane Coutinho ◽  
Renan Gustavo Pacheco Soares ◽  
Fernanda Cavalcanti Ferreira ◽  
Arnaldo Manoel Pereira Carneiro

The partial replacement of cement by mineral additions such as metakaolin has been widely applied in the production of high-strength and durable concretes due to the pozzolanic action, allowing a reduction in the consumption of cement. Tests are performed to determine the mechanical properties of these materials, such as compressive strength, for which there are different levelling techniques of specimens, such as sulphur and neoprene, indicated for different resistance classes. The present study aimed to characterize the behaviour, in the hardened state, of concrete produced with high initial strength Portland cement (CPV-ARI) and metakaolin and evaluate the different levelling methods. Three groups of samples dosed by the IPT-EPUSP method, with mix designs of 1:3, 1:5, and 1:6, and replacements of 8 and 10% of cement by metakaolin, were subjected to compressive strength test, at the ages of 28 days, with levelling by neoprene, and 90 days, with levelling by sulphur. It was observed an increase in strength with addition of metakaolin at both ages. Comparing the results in the two ages, it was verified an increase in strength for the mix designs 1:5 and 1:6 and a reduction for the mix design 1:3. Such fact can be explained by the high strengths achieved by this mix design. As the levelling method used was sulphur, it is confirmed the imprecision of results for strengths above 50 MPa with this technique.


2019 ◽  
Vol 9 (2) ◽  
pp. 47-54
Author(s):  
Fepy Supriani ◽  
Mukhlis Islam

Concrete strength is influenced by several variables, among others by its constituent material, mix design, workmanship, and curing. The objective of concrete curing is to maintain the concrete in certain conditions after the dismantling of the formwork hence the optimization of concrete strength can be achieved close to the designed strength. This study aims to determine the effect of concrete curing on its compressive strength. Designed concrete compressivestrength of 20 MPa with slump values of 60-100 mm to be used. The specimens are cube-shaped with 15 cm dimension. Concrete compressive strength tests were conducted at 28 days and 56 days of concrete age. The types of concrete curing consist of 9 variations, i.e., not treated, water immersed and water sprinkling. Optimum 28 days age of compressive strength of concrete obtained from specimens that immersed in fresh water, which was 31,3 MPa. The concretespecimens that were put outdoor without any curing and treatment generates second highest compressive strength value of 28.6 MPa. The 28 days age of concrete compressive strength values cured with water sprinkling with addition of burlap wrapping are still under the compressive strength of uncured concrete. Significant changes to the strength of cured concrete occurred at age of 56 days and uncured concrete strength decreased up to 19%. The optimum increase occurred in concrete cured with burlap sack wrapping and water sprinkling that was conducted routinely for 3 days by 27,84%. With increasing age (durability) the treated concrete has better strength.


2019 ◽  
Vol 38 (4) ◽  
pp. 1057-1066
Author(s):  
Muhammad Adil Khan ◽  
Mahboob Ali Chowdhry ◽  
Asjad Javed ◽  
Muhammad Laeeque Ahmed ◽  
Hummaira Kanwal

The most important property of concrete is its compressive strength, which is carried out after 28-days proper curing of concrete. This test is affected by other factors like the condition of curing, water to cement ratio, method of transportation, handling of the concrete, extent of vibrations and quality of the ingredients of mix proportion. This research study is an attempt to develop a simple Mathematical equation also known as mathematical model, by using linear regression analysis to estimate the 28-day fc’ (Compressive Strength) of concrete from the test results carried out atearly age. This simple linear equation develops a relationship of 28.5 hours accelerated cured compressive strength with normal cured compressive strength after 28-days. These results show that most of the predicted values of compressive strength, calculated via equations, lies within permissible range difference for compressive strength achieved by experimental method, which is clear indication of credibility of the equations obtained for compressive strength at different age of concrete. The results showed that compressive strength of concrete increases with the increase in content of FA (Fly Ash) upto 30% replacement, and the compressive strength of the concrete starts decreasing beyond 30% FA substitution. This argument is totally in line with all the literature carried out for this research.


2021 ◽  
Vol 878 (1) ◽  
pp. 012047
Author(s):  
R A Siregar ◽  
L E Hutabarat ◽  
S P Tampubolont ◽  
C C Purnomo

Abstract As a material of construction, concrete have a good compressive strength but low tensile strength. From the previous study, reducing the tensile weakness of the concrete using empty fruit bunch (EFB) of Palm for the concrete mix have a significant result. But in contrary, the use of this fiber decreases the compressive strength of concrete. This research aims to optimize a mixture of glass powders on EFB fiber as a solution to increase the compressive and tensile in strength of concrete as well. The fiber material requires pre condition treatment which is soaked in 10% NaOH for 6-10 hours, then is followed with drying for 24 hours and finally cutting into 4 cm pieces long. Using glass powder as mix design with fiber material which is substitute for fine aggregate in concrete. Variation of 0.25%, 0.5%, 0.75%, 1%, 1,25%, 1,5%, 1,75%, and 2% fiber material mix up with 10% glass powder used for concrete specimens with a diameter of 15 cm and a height of 30 cm at the age of 28 days testing. The results of this study shows an increase in the compressive and tensile strength of concrete compare to normal concrete. The optimum compressive increase 21.02% of normal concrete which is 24.87 MPa. Meanwhile the tensile strength an increase of 31,78% of normal concrete which is 3,11 MPa using 1% fibre and 10% of glass powder. Hence, using glass powder mix in EFB to increase compressive and tensile strength of concrete can be developed optimally in the future.


Author(s):  
Muhammad Adil Khan ◽  
Asjad Javed ◽  
Mahboob Ali Choudhry

The most important property of concrete is its compressive strength, which is carried out after 28-days of proper curing of concrete. This test is affected by other factors like the condition of curing, water to cement ratio, method of transportation, handling of the concrete, extent of vibrations and quality of the ingredients of mix proportion. This research study is an attempt to develop a simple mathematical model, by using linear regression analysis to estimate the 28-day fc’ (Compressive Strength) of concrete from the test results carried out at early age. This simple linear equation develops a relationship of 28.5 hours. These results show that most of the predicted values of compressive strength, calculated via equations, lie within permissible range difference for compressive strength achieved by experimental method, which is clear indication of credibility of the equations obtained for compressive strength at different age of concrete. The results show that compressive strength of concrete increases with the increase in content of FA (Fly Ash) upto 30% replacement, and the compressive strength of the concrete starts decreasing beyond 30% FA substitution. This argument is totally in line with all the literature carried out for this research.


Sign in / Sign up

Export Citation Format

Share Document