scholarly journals Mask Detection and Tracing System

Author(s):  
Sanket Shete ◽  
Kiran Tingre ◽  
Ajay Panchal ◽  
Vaibhav Tapse ◽  
Prof. Bhagyashri Vyas

Covid19 has given a new identity for wearing a mask. It is meaningful when these masked faces are detected accurately and efficiently. As a unique face detection task, face mask detection is much more difficult because of extreme occlusions which leads to the loss of face details. Besides, there is almost no existing large-scale accurately labelled masked face dataset, which increase the difficulty of face mask detection. The system encourages to use CNN-based deep learning algorithms which has done vast progress towards researches in face detection In this paper, we propose novel CNN-based method which is formed of three convolutional neural networks to detect face mask. Besides, because of the shortage of face masked training samples, we propose a new dataset called” face mask dataset” to finetune our CNN models. We evaluate our proposed face mask detection algorithm on the face mask testing set, and it achieves satisfactory performance

2022 ◽  
pp. 210-223
Author(s):  
Nitish Devendra Warbhe ◽  
Rutuja Rajendra Patil ◽  
Tarun Rajesh Shrivastava ◽  
Nutan V. Bansode

The COVID-19 virus can be spread through contact and contaminated surfaces; therefore, typical biometric systems like password and fingerprint are unsafe. Face recognition solutions are safer without any need of touching any device. During the COVID-19 situation as all of the people are advised to wear masks on their faces, the existing face detection technique is not able to identify the person with face occlusion. The fraudsters and thieves take advantage of this scenario and misuse the face mask, favoring them to be able to steal and commit various crimes without being identified. Face recognition methods fail to detect or recognize the face as half of the face is masked and the features are suppressed. Face recognition requires the visibility of major facial features for face normalization, orientation correction, and recognition. Thus, the chapter focuses on the facial recognition based on the feature points surrounding the eye region rather than taking the whole face as a parameter.


2018 ◽  
Vol 7 (2.22) ◽  
pp. 35
Author(s):  
Kavitha M ◽  
Mohamed Mansoor Roomi S ◽  
K Priya ◽  
Bavithra Devi K

The Automatic Teller Machine plays an important role in the modern economic society. ATM centers are located in remote central which are at high risk due to the increasing crime rate and robbery.These ATM centers assist with surveillance techniques to provide protection. Even after installing the surveillance mechanism, the robbers fool the security system by hiding their face using mask/helmet. Henceforth, an automatic mask detection algorithm is required to, alert when the ATM is at risk. In this work, the Gaussian Mixture Model (GMM) is applied for foreground detection to extract the regions of interest (ROI) i.e. Human being. Face region is acquired from the foreground region through  the torso partitioning and applying Viola-Jones algorithm in this search space. Parts of the face such as Eye pair, Nose, and Mouth are extracted and a state model is developed to detect  mask.  


2014 ◽  
Vol 971-973 ◽  
pp. 1710-1713
Author(s):  
Wen Huan Wu ◽  
Ying Jun Zhao ◽  
Yong Fei Che

Face detection is the key point in automatic face recognition system. This paper introduces the face detection algorithm with a cascade of Adaboost classifiers and how to configure OpenCV in MCVS. Using OpenCV realized the face detection. And a detailed analysis of the face detection results is presented. Through experiment, we found that the method used in this article has a high accuracy rate and better real-time.


Author(s):  
Enrique Lee Huamaní ◽  
◽  
Lilian Ocares Cunyarachi

Due to the pandemic caused by Covid-19, daily life has changed significantly. For this reason, biosecurity measures have been implemented to prevent the spread of the virus as an effective way to reactivate economic activities. In this sense, the present paper focuses on real-time face detection as a measure of control at the entrance to an entity, thus avoiding the spread of the virus while recognizing the identity of workers despite the use of masks and thus reducing the risk of entry of individuals outside the organization. Therefore, the objective is to contribute to the security of a company through the application of machine learning methodology. The selection of methodology is justified due to the adaptation of the same according to the interests of this project. Consequently, algorithms were used in a progressive manner, obtaining as a result the control system that was intended, since each particularity of the face of the individual was recognized in relation to its corresponding identification. Finally, the results of this article benefit the security of organizations regardless of their field or sector. Keywords— Control, Detection, Facial Recognition, Facial Mask, Face recognition, Machine learning.


2019 ◽  
Vol 11 (10) ◽  
pp. 1153 ◽  
Author(s):  
Mesay Belete Bejiga ◽  
Farid Melgani ◽  
Pietro Beraldini

Learning classification models require sufficiently labeled training samples, however, collecting labeled samples for every new problem is time-consuming and costly. An alternative approach is to transfer knowledge from one problem to another, which is called transfer learning. Domain adaptation (DA) is a type of transfer learning that aims to find a new latent space where the domain discrepancy between the source and the target domain is negligible. In this work, we propose an unsupervised DA technique called domain adversarial neural networks (DANNs), composed of a feature extractor, a class predictor, and domain classifier blocks, for large-scale land cover classification. Contrary to the traditional methods that perform representation and classifier learning in separate stages, DANNs combine them into a single stage, thereby learning a new representation of the input data that is both domain-invariant and discriminative. Once trained, the classifier of a DANN can be used to predict both source and target domain labels. Additionally, we also modify the domain classifier of a DANN to evaluate its suitability for multi-target domain adaptation problems. Experimental results obtained for both single and multiple target DA problems show that the proposed method provides a performance gain of up to 40%.


2014 ◽  
Vol 1030-1032 ◽  
pp. 1779-1782
Author(s):  
Xin Wang ◽  
He Pan

This paper presents a fast algorithm for face detection in complex background, in which image color information is used first, project upper part of the partition of face in the gray image to horizontal and vertical direction. Determine the eyes positions by the minimum value, and scope the human eye in the face of prior knowledge to judge and adjust the face region.


2014 ◽  
Vol 635-637 ◽  
pp. 985-988
Author(s):  
Wei Bo Yu ◽  
Lin Zhao ◽  
Wei Ming He

Because of the influence of complex image background, illumination changes, facial rotation and some other factors, makes face detection in complex background is much more difficult, lower accuracy and slower speed. Adaboost algorithm was used for face detection, and implemented the test process in OpenCV. Face detection experiments were performed on images with facial rotation and complex background, the detection accuracy rate was 85% and 99% respectively, the average detection time of each picture was 16.67ms and 76ms.Experimental results show that the face detection algorithm can accurately and quickly realize face detection in complex background, and can satisfy the requirements of real-time face recognition system.


2020 ◽  
Vol 17 (5) ◽  
pp. 2342-2348
Author(s):  
Ashutosh Upadhyay ◽  
S. Vijayalakshmi

In the field of computer vision, face detection algorithms achieved accuracy to a great extent, but for the real time applications it remains a challenge to maintain the balance between the accuracy and efficiency i.e., to gain accuracy computational cost also increases to deal with the large data sets. This paper, propose half face detection algorithm to address the efficiency of the face detection algorithm. The full face detection algorithm consider complete face data set for training which incur more computation cost. To reduce the computation cost, proposed model captures the features of the half of the face by assuming that the human face is symmetric about the vertical axis passing through the nose and train the system using reduced half face features. The proposed algorithm extracts Linear Binary Pattern (LBP) features and train model using adaboost classifier. Algorithm performance is presented in terms of the accuracy i.e., True Positive Rate (TPR), False Positive Rate (FTR) and face recognition time complexity.


2013 ◽  
Vol 811 ◽  
pp. 417-421
Author(s):  
Shi Lei

Aiming at color images under complex background, this paper put forward a face detection algorithm based on skin color segmentation, combining the geometric characteristics. The skin region can be obtained by using skin color model and OTSU method to automatically optimize threshold segmentation image. By analyzing the characteristics of skin color region, the face position is determined by criterion of ellipse area.


Sign in / Sign up

Export Citation Format

Share Document