scholarly journals Performance Evaluation of Support Vector Machine Algorithm for Human Gesture Recognition

Author(s):  
Vina Ayumi

Research on human motion gesture recognition has been widely used for several technological devices to support monitoring of human-computer interaction, elderly people and so forth. This research area can be observed by conducting experiments for several body movements, such as hand movements, or body movements as a whole. Many methods have been used for human motion gesture recognition in previous studies. This paper attempted to collect data of performance evaluation of support vector machine algorithms for human motion recognition. We developed research methodology that is adapted PRISMA. This methodology is consisted of four main steps for reviewing scientific articles, including identification, screening, eligibility and inclusion criteria. After we obtained result of systematic literature review. We also conducted pilot study of SVM implementation for human gesture recognition. Based on the previous study result, the accuracy performance of vector machine algorithms for body gesture dataset is between 82.88% - 99.92% and hand gesture dataset 88.24% - 95.42%. Based on our pilot experiment, recognition accuracy with the SVM algorithm for human gesture recognition achieved 94,50% (average) accuracy.

2020 ◽  
Vol 5 (2) ◽  
pp. 609
Author(s):  
Segun Aina ◽  
Kofoworola V. Sholesi ◽  
Aderonke R. Lawal ◽  
Samuel D. Okegbile ◽  
Adeniran I. Oluwaranti

This paper presents the application of Gaussian blur filters and Support Vector Machine (SVM) techniques for greeting recognition among the Yoruba tribe of Nigeria. Existing efforts have considered different recognition gestures. However, tribal greeting postures or gestures recognition for the Nigerian geographical space has not been studied before. Some cultural gestures are not correctly identified by people of the same tribe, not to mention other people from different tribes, thereby posing a challenge of misinterpretation of meaning. Also, some cultural gestures are unknown to most people outside a tribe, which could also hinder human interaction; hence there is a need to automate the recognition of Nigerian tribal greeting gestures. This work hence develops a Gaussian Blur – SVM based system capable of recognizing the Yoruba tribe greeting postures for men and women. Videos of individuals performing various greeting gestures were collected and processed into image frames. The images were resized and a Gaussian blur filter was used to remove noise from them. This research used a moment-based feature extraction algorithm to extract shape features that were passed as input to SVM. SVM is exploited and trained to perform the greeting gesture recognition task to recognize two Nigerian tribe greeting postures. To confirm the robustness of the system, 20%, 25% and 30% of the dataset acquired from the preprocessed images were used to test the system. A recognition rate of 94% could be achieved when SVM is used, as shown by the result which invariably proves that the proposed method is efficient.


2020 ◽  
Vol 4 (2) ◽  
pp. 362-369
Author(s):  
Sharazita Dyah Anggita ◽  
Ikmah

The needs of the community for freight forwarding are now starting to increase with the marketplace. User opinion about freight forwarding services is currently carried out by the public through many things one of them is social media Twitter. By sentiment analysis, the tendency of an opinion will be able to be seen whether it has a positive or negative tendency. The methods that can be applied to sentiment analysis are the Naive Bayes Algorithm and Support Vector Machine (SVM). This research will implement the two algorithms that are optimized using the PSO algorithms in sentiment analysis. Testing will be done by setting parameters on the PSO in each classifier algorithm. The results of the research that have been done can produce an increase in the accreditation of 15.11% on the optimization of the PSO-based Naive Bayes algorithm. Improved accuracy on the PSO-based SVM algorithm worth 1.74% in the sigmoid kernel.


Author(s):  
YAN ZHANG ◽  
BIN YU ◽  
HAI-MING GU

Document image segmentation is an important research area of document image analysis which classifies the contents of a document image into a set of text and non-text classes. Previous existing methods are often designed to classify text and halftone therefore they perform poorly in classifying graphics, tables and circuit, etc. In this paper, we present a robust multi-level classification method using multi-layer perceptron (MLP) and support vector machine (SVM) to segment the texts from non-texts and thereafter classify them as tables, graphics and halftones. This method outperforms previously existing methods by overcoming various issues associated with the complexity of document images. Experimental results prove the effectiveness of our proposed method. By virtue of our multi-level classification approach, the text components, halftone components, graphic components and table components are accurately classified respectively which would highly improve OCR accuracy to reduce garbage symbols as well as increase compression ratio thereafter simultaneously.


In multimedia data analysis, video tagging is the most challenging and active research area. In which finding or detecting the object with the dynamic environment is most challenging. Object detection and its validation are an essential functional step in video annotation. Considering the above challenges, the proposed system designed to presents the people detection module from a complex background. Detected persons are validated for further annotation process. Using publically available dataset for module design, Viola-Jones object detection algorithm is used for person detection. Support Vector Machine (SVM) authenticate the detected object/person based on it local features using Local Binary Pattern (LBP). The performance of the proposed system presents given architecture is effectively annotating the detected people emotion.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Yang Li ◽  
Zhichuan Zhu ◽  
Alin Hou ◽  
Qingdong Zhao ◽  
Liwei Liu ◽  
...  

Pulmonary nodule recognition is the core module of lung CAD. The Support Vector Machine (SVM) algorithm has been widely used in pulmonary nodule recognition, and the algorithm of Multiple Kernel Learning Support Vector Machine (MKL-SVM) has achieved good results therein. Based on grid search, however, the MKL-SVM algorithm needs long optimization time in course of parameter optimization; also its identification accuracy depends on the fineness of grid. In the paper, swarm intelligence is introduced and the Particle Swarm Optimization (PSO) is combined with MKL-SVM algorithm to be MKL-SVM-PSO algorithm so as to realize global optimization of parameters rapidly. In order to obtain the global optimal solution, different inertia weights such as constant inertia weight, linear inertia weight, and nonlinear inertia weight are applied to pulmonary nodules recognition. The experimental results show that the model training time of the proposed MKL-SVM-PSO algorithm is only 1/7 of the training time of the MKL-SVM grid search algorithm, achieving better recognition effect. Moreover, Euclidean norm of normalized error vector is proposed to measure the proximity between the average fitness curve and the optimal fitness curve after convergence. Through statistical analysis of the average of 20 times operation results with different inertial weights, it can be seen that the dynamic inertial weight is superior to the constant inertia weight in the MKL-SVM-PSO algorithm. In the dynamic inertial weight algorithm, the parameter optimization time of nonlinear inertia weight is shorter; the average fitness value after convergence is much closer to the optimal fitness value, which is better than the linear inertial weight. Besides, a better nonlinear inertial weight is verified.


2019 ◽  
Vol 8 (2) ◽  
pp. 86 ◽  
Author(s):  
Ping Liu ◽  
Xi Chen

Remote sensing has been widely used in vegetation cover research but is rarely used for intercropping area monitoring. To investigate the efficiency of Chinese Gaofen satellite imagery, in this study the GF-1 and GF-2 of Moyu County south of the Tarim Basin were studied. Based on Chinese GF-1 and GF-2 satellite imagery features, this study has developed a comprehensive feature extraction and intercropping classification scheme. Textural features derived from a Gray level co-occurrence matrix (GLCM) and vegetation features derived from multi-temporal GF-1 and GF-2 satellites were introduced and combined into three different groups. The rotation forest method was then adopted based on a Support Vector Machine (RoF-SVM), which offers the advantage of using an SVM algorithm and that boosts the diversity of individual base classifiers by a rotation forest. The combined spectral-textural-multitemporal features achieved the best classification result. The results were compared with those of the maximum likelihood classifier, support vector machine and random forest method. It is shown that the RoF-SVM algorithm for the combined spectral-textural-multitemporal features can effectively classify an intercropping area (overall accuracy of 86.87% and kappa coefficient of 0.78), and the classification result effectively eliminated salt and pepper noise. Furthermore, the GF-1 and GF-2 satellite images combined with spectral, textural, and multi-temporal features can provide sufficient information on vegetation cover located in an extremely complex and diverse intercropping area.


Sign in / Sign up

Export Citation Format

Share Document