scholarly journals Effective removal of Cu(II) from aqueous solution using Acasia Arabica tree bark sustrate

Author(s):  
Gharde A. D. ◽  
Gharde B. D.

This work reports the characterization of intensive industrial and agricultural activity is the basic reason of enormous pollution of the environment. Heavy metals generally occur in water in low concentration as a result of metal industries and partly through geological processes, but these cause direct toxicity both to human and other living beings. Due to their presence obeyed the specified limit. Heavy metals in wastewater has emerged as focus of environment remediation efforts of industrialization, urbanization with new technological advantages. The natural bodies of water are polluted by means of different contaminant like organic refractories, heavy metal ions etc. The significant concentration of some of the heavy metal ions in water are toxic to human being, animals as well as aquatic organisms. Some heavy metal ions even at the trace level has been recognized toxic to the public health. Many metals have been evaluated toxic to aquatic life certain to threshold toxicity level. The effect of tree bark for Cu(II) from copper sulphate on the metal content of industrial wastewater was investigated in the pH of 4-6. It is observed that the method of binding follows the first order adsorption rate expression such as effect of pH, agitation time, doses of bark substrate, initial metal ion concentration, effect of varying temperature were also studied.

2021 ◽  
Vol 12 (2) ◽  
pp. 1884-1898

Natural water gets contaminated with heavy metal ions because of industrial effluents' discharge into the aquatic environment. As these heavy metal ions cause various health hazards, they should be removed from the aqueous solution. Heavy metal ion concentration in the aqueous solution is very less, so conventional metal removal and recovery processes cannot be applied here. The adsorption method is a great alternative to all these processes as it is a cost-effective and easy method. The use of natural, low-cost materials as adsorbents is eco-friendly also. However, metal uptake capacity of low-cost materials is very less. So, modification is required for low-cost materials to increase their efficiency. In the present review, different modification procedures adopted by different researchers have been discussed. Different low-cost materials used are sawdust, fruit and vegetable wastes, soil, minerals, etc. The modifying agents are heat, acids, bases, and other chemicals. Nevertheless, most of the studies are limited to batch tests only. Future research should be carried out on the extension of batch tests to column study for the large-scale treatment of contaminated water, and the cost of modification procedures and their impact on the environment should also be assessed.


2022 ◽  
Author(s):  
Zijun Xu ◽  
Yuying Liu ◽  
Jiao Chen ◽  
Xiyuan Wang ◽  
Hao Liu ◽  
...  

Abstract As a large amount of heavy metals leaches into water sources from industrial effluents, heavy metal pollution has become an important factor affecting water quality. To enable the detection of multiple heavy metals, we constructed a pH-regulation fluorescence sensor array. Firstly, by adding a metal chelating agent as receptor, metal ions and carbon quantum dots (CDs) were connected to distinguish between Cr6+, Fe3+, Fe2+, and Hg2+ ions. Thus, the lack of affinity between the indicator functional groups and the analyte was solved. Secondly, by adjusting the pH environment of the solution system, an economical and simple array sensing platform is established, which effectively simplified the array construction. In this study, the SX-model was used in the field of fluorescence sensor array detection for metal ion recognition. Based on the strategy of stepwise prediction, combined with the classification and concentration models, the bottleneck of the unified model in previous studies was broken. This sensor array demonstrated sensitive detection of four heavy metal ions within a concentration range from 1 to 50 µM, with an accuracy of 95.45%. Moreover, it displayed the ability to efficiently identify binary mixed samples with an accuracy of 95.45%. Furthermore, metal ions in 15 real samples (lake water) were effectively discriminated with 100% accuracy. A chelating agent was used to improve the sensitivity of heavy metal ion detection and eventually led to high-precision prediction using the SX-model.


2013 ◽  
Vol 67 (5) ◽  
pp. 773-779 ◽  
Author(s):  
Ivana Kostic ◽  
Tatjana Andjelkovic ◽  
Ruzica Nikolic ◽  
Tatjana Cvetkovic ◽  
Dusica Pavlovic ◽  
...  

The complexation of humic acid with certain heavy metal ions (Co(II), Ni(II), Cu(II), Zn(II) and Pb(II)) was investigated. The stability constants of humate complexes were determined by method which is based on distribution of metal ions between solution and resin in the presence and the absence of ligand, known as Schubert?s ion exchange method. Experiments were performed at 25 ?C, at pH 4.0 and ionic strength of 0.01 mol dm-3. It was found that the 1:1 complexes were formed between metal ions and humic acid. Obtained results of the stability constants, log ?mn, of complexes formed between the metal ions and humic acid follow the order Co(II) < Ni(II) < Cu(II) > Zn(II) which is the same like in the Irving-Williams series for the binding strength of divalent metal ion complexes. Stability constant of complex between Pb(II) ions and humic acid is greater than stability constants of other investigated metal-humate complexes. The investigation of interaction between heavy metal ions and humics is important for the prediction of the distribution and control of the migration of heavy metals in natural environment.


2019 ◽  
Vol 70 (9) ◽  
pp. 3167-3175
Author(s):  
Claudia Maria Simonescu ◽  
Daniela Cristina Culita ◽  
Virgil Marinescu ◽  
Christu Tardei ◽  
Dorinel Talpeanu

Mining activities have a high negative impact on the environment and on human health. Environmental impacts can result in contamination of surface water, groundwater, soil and air. Large volumes of wastewater produced by mining activities have to be remediated before being discharged into the environment. Due to the complex composition of wastewater coming from the mining industry and because their negative impacts, numerous remediation techniques have been applied. Adsorption is one of the most extensively used ways to remediate mining wastewater as a consequence of its low cost, easiness to be performed, and also due to the wide variety of materials (natural and synthetic) that can be use as adsorbents. Hydroxyapatite (HAP, Ca10(PO4)6(OH)2), a naturally occurring form of calcium phosphate has a good capacity to remove heavy metal ions from aqueous solutions due to its excellent properties. By preparing hydroxyapatite using different synthesis methods, its properties can be manipulated in order to increase the adsorption properties and reactivity. Herein, we reported synthesis of hydroxyapatite (HAP) samples using different synthesis conditions to establish the effect of synthesis conditions onto HAP properties. The HAP samples prepared have been characterized by the use of X-ray diffraction, FT-IR spectroscopy, specific surface measurements, Scanning Electron Microscopy (SEM). The stoichiometric compounds with high degree of crystallinity, low average particle diameter values, and low specific surface have been prepared by the solid state reaction and high calcination temepratures. The addition of surfactant (dispersant) has resulted in an increase in the specific surface area, which will result in an increase in the retention capacity of heavy metal ions in wastewater. The adsorbents prepared were used to remediate mine water. Results showed that non-calcinated HAP samples have a higher heavy metals adsorption capacity compared to HAP samples calcinated at 600 �C and 900 �C. The HAP samples prepared in presence of surfactant exhibit a higher heavy metals adsorption capacity than samples prepared in absence of surfactant. The values of the retention capacity differ depending on the nature of the metal ion: QMn(II) ] QFe(III) ] QZn(II) ] QPb(II) ] QNi(II). A change in the pH of mine water from 2.6 to 5.5 has occur that means that the metal ion retention mechanism goes through chemical reactions. The metal ions retention capacity suggests application of hydroxyapatite for remediation of mining wastewater.


2011 ◽  
Vol 236-238 ◽  
pp. 237-240 ◽  
Author(s):  
Xue Yi Guo ◽  
Sha Liang ◽  
Qing Hua Tian

In this study, orange peel (OP) was modified by KCl to prepare a novel orange peel adsorbent named as KOP. The adsorption behaviors of KOP for five heavy metals (Cu2+, Cd2+, Pb2+, Zn2+, Ni2+) were studied. The effects of pH, adsorption time and metal ion concentration on single heavy metal solution adsorption by KOP were investigated. All adsorption processes can attain equilibrium with 20min and kinetics data of five heavy metal ions were fitted to pseudo-second-equation; the maximum adsorption capacities for Cu2+, Cd2+, Pb2+, Zn2+and Ni2+were calculated as 59.77, 125.63, 141.84, 45.29 and 49.14 mg/g, respectively. Recycle and reuse experiments indicate that KOP could be used for more than 10 cycles. The effect of coexist metal ions on adsorption can be neglected.


2002 ◽  
Vol 20 (7) ◽  
pp. 607-617 ◽  
Author(s):  
Adil Denizli ◽  
Bora Garipcan ◽  
Sibel Emir ◽  
Süleyman Patir ◽  
Ridvan Say

Details of the adsorption performance of poly(2-hydroxyethylmethacrylate–methacrylamidocysteine) [p(HEMA–MAC)] beads towards the removal of heavy metal ions from aqueous solution were studied. The metal-complexing ligand and/or co-monomer MAC was newly synthesized from methylacrylochloride and cysteine. Spherical beads of average size 150–200 mm were obtained by the radical suspension polymerization of MAC and HEMA conducted in an aqueous dispersion. The p(HEMA–MAC) beads obtained had a specific surface area of 18.9 m2/g. p(HEMA–MAC) beads were characterized by swelling studies, FT-IR spectroscopy and elemental analysis. Such beads with a swelling ratio of 72%, and containing 3.9 mmol MAC/g, were used for heavy metal removal studies. The adsorption capacities of the beads for selected metal ions, i.e. CdII, AsIII, CrIII, HgII and PbII, were investigated in aqueous media containing different amounts of these ions (10–750 mg/l) and at different pH values (3.0–7.0). The adsorption rate was fast in all cases. The maximum adsorption capacities of the p(HEMA–MAC) beads were 1058.2 mg/g for CdII, 123.4 mg/g for AsIII, 199.6 mg/g for CrIII, 639.1 mg/g for PbII and 1018.6 mg/g for HgII. On a molar basis, the following affinity order was observed: CdII > HgII > CrIII > PbII >AsIII. The adsorption capacity of the MAC-incorporated beads was affected significantly by the pH value of the aqueous medium. The adsorption of heavy metal ions from artificial wastewater was also studied. In this case, the adsorption capacities were 52.2 mg/g for CdII, 23.1 mg/g for CrIII, 83.4 mg/g for HgII, 62.6 mg/g for PbII and 11.1 mg/g for AsIII at an initial metal ion concentration of 0.5 mmol/l. The chelating beads could be regenerated easily with a higher effectiveness by 0.1 M HNO3. These features make p(HEMA–MAC) beads potential candidates for heavy metal ion removal at high capacity.


Author(s):  
Gharde B. D. ◽  
Gharde A D

Salt of various metals and other potentially dangerous are being discharged in to the aquatic environment, water containing vital concentration of some of the heavy metal ions are harmful to human being, animal as well as aquatic organism. The toxicity of some heavy metal ions even at the trace level has been recognized with respect to public health for many years. Metals such as Mercury, Lead, Cadmium, Copper, Nickel and Chromium are under this category. Many metals have been evaluated as harmful to aquatic life above certain toxicity level. Many industries may have specific waste problem where the particular metal is an integral part of the many manufacturing process. Notable examples are the high zinc waste of viscosity Rayon manufacturing ground wood pulp production and News print production. Adsorption has been proved to be an excellent way to treat industrial waste effluents, offering significant advantages like the low-cost availability, profitability, ease of operation and efficiency comparative to activated carbon. The Acasia arabica tree bark substrate was found to have good sorption capacity for Nickel. Studies indicate that the sorption of Ni (II) increases with the increase in pH value and contact time, 30minute was found to be optimum. The effect of concentration shows that the Acasia arabica can remove Ni (II) ions from aqueous solutions, the concentration of metal ions increases adsorption decreases.


Author(s):  
Zeynab Karimi ◽  
Reza Khalili ◽  
Mohammad Ali Zazouli

Abstract In this study, polythiophene/Al2O3 (PTh/Al2O3) and polyaniline/Al2O3 (PAn/Al2O3) nanocomposites in the presence of poly(vinyl alcohol) (PVA) as the surfactant were synthesized via in situ chemical oxidative polymerization method in aqueous medium. The synthesized nanocomposites were characterized by Scanning electron microscopy (SEM), Fourier transform-infrared (FTIR) spectroscopy and X-ray diffraction (XRD). Results indicated that the Al2O3 and poly(vinyl alcohol) influenced the properties of synthesized nanocomposites. The aim of this research was to investigate the sorption characteristic of polythiophene and polyaniline nanocomposites for the removal of heavy metal cations including Pb(II), Zn(II) and Cd(II) from aqueous solution. The factors that affected the adsorption equilibrium as well as the removal efficiency of the nanoadsorbents, i.e., contact time, metal ion concentration, pH and adsorption conditions were investigated in detail. From the kinetic results, it was concluded that the pseudo-second-order kinetic model was found to the best at describing the adsorption process for Pb(II), Zn(II) and Cd(II) on PTh-PVA/Al2O3 and PAn-PVA/Al2O3. In addition, thermodynamic analysis suggests the endothermic and spontaneous nature of the present adsorption process with increased entropy on PTh-PVA/Al2O3 and PAn-PVA/Al2O3. The results suggest polythiophene, polyaniline and their nanocomposites have great potential to be used as efficient absorbent for the removal of heavy metal ions from water.


Author(s):  
Gharde A. D. ◽  
Gharde B. D.

Salt of various heavy metals and other potentially dangerous are being discharged into the aquatic environment. Water containing vital concentration of some of heavy metal ions are harmful to human being, animal as well as aquatic organisms. The toxicity of some heavy metal ions, even at the trace level has been recognised with respect to the public health for many years. Metals such as Mercury, Lead, Cadmium, Copper and Chromium are under this category. Many metals have been evaluated as harmful to aquatic life above certain toxicity level. Any type of pollution brings about noticeable changes in the physiochemical parameters of the water, therby making it unsuitable for some beneficial uses. Thus, pollution causes changes in almost in the parameter. When increasing the pace of industrialisation along with population explosion, urbanisation and green revolution are reflected in varying degree of purity of water, soil and air. Majority of industries are water based and considerable volume of waste water is discharged to the environment either untreated or inadequately treated leading to the problem of surface and ground water pollution. The capital cost and operating waste water treatment system are rising on one hand and on the other there is a pressing demand for the treatment of waste water generated by increase residential and industrial development.


2002 ◽  
Vol 20 (2) ◽  
pp. 119-129 ◽  
Author(s):  
R. Saliba ◽  
H. Gauthier ◽  
R. Gauthier ◽  
M. Petit-Ramel

Eucalyptus barks harvested in Lebanon were used for the adsorption of pollutants such as heavy metal ions and dyes. Washing with water or pretreatment with formaldehyde was performed on the bark powder. The adsorption capacity of this material towards CuII, CrIII, CdII and NiII was evaluated in a batch process for various parameters. The results obtained showed that the retention capacity increased with contact time, pH and initial metal ion concentration but decreased with temperature. The adsorption capacities were 2.61, 0.71, 2.24 and 0.75 mmol/g adsorbent for CuII, CrIII, CdII and NiII, respectively. Eucalyptus barks are also very efficient for the adsorption of dyes (Acid Blue 25, Erichrome Blue Black B and Calmagite) because of interaction between the hydroxy and amino groups of the dyes and the phenolic moities of bark. This adsorption was modified when metal ions had already been adsorbed on to the barks as a result of the formation of a 1:1 complex between the dye and the metal ion. Desorption was achieved by treating with the sodium salt of ethylenediamine-tetraacetic acid (EDTA) for metal ions and by heating at 75°C in aqueous medium for dyes. After desorption, the recycling of the support was tested for potential use as a means of concentrating pollutants.


Sign in / Sign up

Export Citation Format

Share Document