scholarly journals Physico-Chemical Properties and Quantum Chemical Calculation of 2-methoxy-4-(prop-2-en-1-yl) phenol (EUGENOL)

Author(s):  
Dr. Raksha Gupta

Physico-chemical properties plays an important role in determining toxicity of a material hence were calculated using acdlab/chemsketch and the data predicted is generated using ACD/Labs Percepta Platform - PhysChem Module. Gaussian 09, RevisionA.01, software package was used for the theoretical quantum chemical calculations of 2-methoxy-4-(prop-2-en-1-yl) phenol commonly called Eugenol. DFT/B3LYP/6-311G (d, p) basis was used to perform geometric optimization and vibrational frequency determination of the molecule. The statistical thermochemical calculations of the molecule were done at DFT/B3LYP/6-311G (d, p) basis set to calculate the standard thermodynamic functions: heat capacity (CV), entropy (S) and Enthalpy (E). DFT/B3LYP/6-311G (d, p) basis set was used to calculate the various NLO properties like dipole moment (µ), mean linear polarizability (α), anisotropic polarizability (Δα), first order hyperpolarizability (β), second order hyperpolarizability (γ) in terms of x, y, z components for Eugenol (2-methoxy-4-(prop-2-en-1-yl) phenol. Same basis set was used to carry out Mulliken population analysis. UV-Visible absorption spectra, ECD spectra, electronic transitions, vertical excitation energies and oscillator strengths of Eugenol (2-methoxy-4-(prop-2-en-1-yl) phenol) were computed by Time Dependent DFT (TD-DFT) method using the same basis set. FMO analysis, Molecular electrostatic potential study was also done using the same basis set.

Author(s):  
Raksha Gupta

Gaussian 09, RevisionA.01, software package was used for the theoretical quantum chemical calculations of 5-methyl-2-isopropylphenol. DFT/B3LYP/6-311G (d, p) basis was used to perform geometric optimization and vibrational frequency determination of the molecule. The statistical thermochemical calculations of the molecule were done at DFT/B3LYP/6-311G (d, p) basis set to calculate the standard thermodynamic functions: heat capacity (CV), entropy (S) and Enthalpy (E). Various NLO properties like total dipole moment (µ), mean linear polarizability (α), anisotropic polarizability (Δα), first order polarizability (β), and second order hyperpolarizability (γ) in terms of x, y, z components were calculated at DFT/B3LYP/6-311G (d, p) basis set for 5-methyl-2-isopropylphenol. Mulliken population analysis was also done using the same basis set. Time Dependent DFT (TD-DFT) method using the same basis set was used to compute UV-Visible absorption spectra, ECD spectra, electronic transitions, vertical excitation energies and oscillator strengths of 5-methyl-2-isopropylphenol.FMO analysis, ESP study were also done using the same basis set.


2016 ◽  
Vol 94 (9) ◽  
pp. 803-807
Author(s):  
Angyang Yu

The ground state and low-lying excited states of the CCCN radical and its ions have been investigated systematically using the complete active space self-consistent field (CASSCF) and multi-configuration second-order perturbation theory (CASPT2) methods in conjunction with the ANO-RCC-TZP basis set. The calculated results show that the state 12Σ+ has the lowest CASPT2 energy among the electronic states. By means of the geometric optimization of this radical, it could be found that the molecule exhibits linear structure, with the bond lengths R1 = 1.214 Å, R2 = 1.363 Å, R3 = 1.162 Å, which are very close to the experimental values. The calculated vertical excitation energies and the corresponding oscillator strengths show that there are three relatively strong peaks at energies 0.63, 4.04, and 5.49 eV, which correspond to the transitions 12Σ+ → 12Π, 12Σ+ → 22Π, and 12Σ+ → 22Σ+, respectively. Additionally, the electronic configuration and the harmonic vibration frequencies of each state are also investigated.


2020 ◽  
Author(s):  
Sopanant Datta ◽  
Taweetham Limpanuparb

<p>This article presents theoretical data on geometric and energetic features of halobenzenes and xylenes. Data were obtained from <i>ab initio</i> geometry optimization and frequency calculations at HF, B3LYP, MP2 and CCSD levels of theory on 6-311++G(d,p) basis set. In total, 1504 structures of halobenzenes, three structures of xylenes and one structure of benzene were generated and processed by custom-made codes in Mathematica. The quantum chemical calculation was completed in Q-Chem software package. Geometric and energetic data of the compounds are presented in this paper as supplementary tables. Raw output files as well as codes and scripts associated with production and extraction of data are also provided.</p>


2019 ◽  
Author(s):  
Kridtin Chinsukserm ◽  
Wanutcha Lorpaiboon ◽  
Peerayar Teeraniramitr ◽  
Taweetham Limpanuparb

<p>This article presents theoretical data on geometric and energetic features of halogenated compounds of cyclopropane (∆) and ethene (C=C), imine (C=N), methylphosphine (C=P), iminophosphine (N=P), diazene (N=N) and diphosphene (P=P). The data were obtained from <i>ab initio</i> geometric optimization and frequency calculations at HF, B3LYP, MP2 and CCSD levels of theory on 6-311++G(d,p) basis set. Input structures were generated by shell scripts and run by Q-Chem quantum chemical package. The output files were processed to extract geometric and energetic information by Wolfram Mathematica.</p>


2020 ◽  
Vol 21 (4) ◽  
pp. 1494 ◽  
Author(s):  
Oleg V. Mikhailov ◽  
Denis V. Chachkov

The quantum-chemical calculation of iron, cobalt and nickel heteroligand complexes with the double deprotonated form of (NNNN)-donor atomic ligand—3,7,11,15-tetraazaporphine—and two oxo ligands has been carried out. Data on the structural and standard thermodynamic parameters, NBO analysis and multiplicity of the ground states of these complexes have been presented. The given calculation has been made by using the density functional theory (DFT) method with the OPBE/TZVP basis set. Based on the results of this calculation, the possibility of the existence of oxidation state VI for the chemical elements indicated above—unusual for iron and cobalt, and for nickel, unknown at all—has been shown.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Karuppannan Selvaraju ◽  
Poomani Kumaradhas

The present study has been performed to understand the charge density distribution and the electrical characteristics of Au and thiol substituted tetrathiafulvalene (TTF) based molecular nanowire. A quantum chemical calculation has been carried out using DFT method (B3LYP) with the LANL2DZ basis set under various applied electric fields (EFs). The bond topological analysis characterizes the terminal Au–S and S–C bonds as well as all the bonds of central TTF unit of the molecule. The variation of electron density and Laplacian of electron density at the bond critical point of bonds for zero and different applied fields reveal the electron density distribution of the molecule. The molecular conformation, the variation of atomic charges and energy density distribution of the molecule have been analyzed for the various levels of applied EFs. The HOMO-LUMO gap calculated from quantum chemical calculations has been compared with the value calculated from the density of states. The variation of dipole moment due to the polarization effect and the I-V characteristics of the molecule for the various applied EFs have been well discussed.


2020 ◽  
Author(s):  
Sopanant Datta ◽  
Taweetham Limpanuparb

<div>This article presents theoretical data on geometric and energetic features of halobenzenes and xylenes. Data were obtained from ab initio geometry optimization and frequency calculations at HF, B3LYP, MP2 and CCSD levels of theory on 6-311++G(d,p) basis set. In total, 1504 structures of halobenzenes, three structures of xylenes and one structure of benzene were generated and processed by custom-made codes in Mathematica. The quantum chemical calculation was completed in Q-Chem software package. Geometric and energetic data of the compounds are presented in this paper as supplementary tables. Raw output files as well as codes and scripts associated with production and extraction of data are also provided.</div>


Author(s):  
J M Mir ◽  
F A Itoo

Study of molecular density theory is considered nowadays as a powerful tool to speculate various physical and chemical properties of materials. Herein, we report the theoretical inference of associated changes in chemical properties of sodium dodecyl sulphate and tartrazine when allowed to go through pre- and post-micellization phenomena. Because of the involvement of the two compounds in manifold industrial applications, the study reflects some important conclusions of drug-surfactant chemistry. The computational work involves the use of Polarizable Continuum Model (PCM), water as solvent and 631g(d,p) basis set with B3LYP as functional. Each molecule was run individually first to arrive at an optimized structure followed by a final optimization of assumed network (mesh of proposed binary mixture) to visualize the changes that occur on combination. Each set of energy minimal calculation was then run for frequency calculation, electronic spectral evaluation and molecular natural population analysis. Molecular electrostatic potential surfaces were discussed in linking the appropriate hydrophobic and hydrophilic interaction.


2020 ◽  
Vol 41 (6) ◽  
pp. 1626-1631
Author(s):  
S. Bhagawati ◽  
◽  
B. Bhattacharyya ◽  
B.K. Medhi ◽  
S. Bhattacharjee ◽  
...  

Aim: To investigate the influence of soil physico-chemical properties on diversity and density of Collembola in an undisturbed fallow land ecosystem. Methodology: Soil sampling was done at monthly intervals to explore the diversity, density and seasonal variation patterns of collembolan population in a fallow land ecosystem during March, 2015 to February, 2016. Collembolans were sampled using Tullgren funnel and identified by standard taxonomic keys. Finally, correlation studies were conducted to assess the influence of different soil physico-chemical properties on diversity and density of collembolans. Results: Five species of Collembola (Cyphoderus sp., Entomobrya sp., Isotoma sp., Folsomia sp. and Hypogastrura sp.) belonging to 4 families (Cyphoderidae, Entomobryidae, Isotomidae and Hypogastruridae) were identified. Cyphoderus sp. was recorded to be the most abundant species contributing 44.29 percent of population. Analysis of different diversity indices revealed higher diversity of collembolans during summer, indicating the presence of relatively stable habitats as compared to other seasons. Summer season also recorded highest density of Collembola. During all the seasons studied, a strong significant positive correlation (P<0.05 and P<0.01) of collembolan population was registered with soil moisture and organic carbon, respectively, however, remaining edaphic factors registered non-significant relationship with the collembolan density and diversity Interpretation: The study clearly indicated that the soil moisture and organic carbon content had a positive relationship with collembolan population and provides a relatively favourable ecological niche for their assemblages.


2019 ◽  
Author(s):  
Yasuharu Okamoto

<p>To comply with the Kigali amendment to the Montreal Protocol in 2016, it becomes an urgent matter to develop new refrigerants with low global warming potential with simultaneously meeting conventional requirements of cooling performance, safety, and non-destructive to the ozone layer. Because each requirement links to different chemical property, proper control of various chemical properties is necessary to achieve the requirements. However, it seems to be extremely difficult to satisfy all the requirements simultaneously due to the tradeoffs among the properties. For this reason, we need to correctly recognize how these chemical properties behave when the composition of molecule is changed. Here we have done in silico screening that combines quantum chemical calculation, machine learning, and database search, where 10,163 molecules were exhaustively investigated within the properly imposed constraints, then we have found several candidates for new refrigerants. It should be noted that the synthesis of refrigerants is more difficult than that of ordinary organic molecules because glassware cannot be used for the synthesis of fluorine-containing molecules that most refrigerants apply. This makes in silico screening a more useful approach in the design of refrigerants. </p>


Sign in / Sign up

Export Citation Format

Share Document