Three-dimensional artificial liver platforms for drug screening and tissue engineering applications

2020 ◽  
Author(s):  
◽  
Gaia Ferracci
Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 794 ◽  
Author(s):  
Su Jeong Lee ◽  
Ji Min Seok ◽  
Jun Hee Lee ◽  
Jaejong Lee ◽  
Wan Doo Kim ◽  
...  

Bio-ink properties have been extensively studied for use in the three-dimensional (3D) bio-printing process for tissue engineering applications. In this study, we developed a method to synthesize bio-ink using hyaluronic acid (HA) and sodium alginate (SA) without employing the chemical crosslinking agents of HA to 30% (w/v). Furthermore, we evaluated the properties of the obtained bio-inks to gauge their suitability in bio-printing, primarily focusing on their viscosity, printability, and shrinkage properties. Furthermore, the bio-ink encapsulating the cells (NIH3T3 fibroblast cell line) was characterized using a live/dead assay and WST-1 to assess the biocompatibility. It was inferred from the results that the blended hydrogel was successfully printed for all groups with viscosities of 883 Pa∙s (HA, 0% w/v), 1211 Pa∙s (HA, 10% w/v), and 1525 Pa∙s, (HA, 30% w/v) at a 0.1 s−1 shear rate. Their structures exhibited no significant shrinkage after CaCl2 crosslinking and maintained their integrity during the culture periods. The relative proliferation rate of the encapsulated cells in the HA/SA blended bio-ink was 70% higher than the SA-only bio-ink after the fourth day. These results suggest that the 3D printable HA/SA hydrogel could be used as the bio-ink for tissue engineering applications.


Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 457 ◽  
Author(s):  
Rodrigo Urruela-Barrios ◽  
Erick Ramírez-Cedillo ◽  
A. Díaz de León ◽  
Alejandro Alvarez ◽  
Wendy Ortega-Lara

Three-dimensional (3D) printing technologies have become an attractive manufacturing process to fabricate scaffolds in tissue engineering. Recent research has focused on the fabrication of alginate complex shaped structures that closely mimic biological organs or tissues. Alginates can be effectively manufactured into porous three-dimensional networks for tissue engineering applications. However, the structure, mechanical properties, and shape fidelity of 3D-printed alginate hydrogels used for preparing tissue-engineered scaffolds is difficult to control. In this work, the use of alginate/gelatin hydrogels reinforced with TiO2 and β-tricalcium phosphate was studied to tailor the mechanical properties of 3D-printed hydrogels. The hydrogels reinforced with TiO2 and β-TCP showed enhanced mechanical properties up to 20 MPa of elastic modulus. Furthermore, the pores of the crosslinked printed structures were measured with an average pore size of 200 μm. Additionally, it was found that as more layers of the design were printed, there was an increase of the line width of the bottom layers due to its viscous deformation. Shrinkage of the design when the hydrogel is crosslinked and freeze dried was also measured and found to be up to 27% from the printed design. Overall, the proposed approach enabled fabrication of 3D-printed alginate scaffolds with adequate physical properties for tissue engineering applications.


Lab on a Chip ◽  
2015 ◽  
Vol 15 (3) ◽  
pp. 920-930 ◽  
Author(s):  
H. K. Chu ◽  
Z. Huan ◽  
J. K. Mills ◽  
J. Yang ◽  
D. Sun

A multi-layer scaffold incorporating dielectrophoresis for automated cell manipulation is developed to construct 3D cellular patterns for tissue engineering applications.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Mohd Izzat Hassan ◽  
Tao Sun ◽  
Naznin Sultana

Tissue engineering fibrous scaffolds serve as three-dimensional (3D) environmental framework by mimicking the extracellular matrix (ECM) for cells to grow. Biodegradable polycaprolactone (PCL) microfibers were fabricated to mimic the ECM as a scaffold with 7.5% (w/v) and 12.5% (w/v) concentrations. Lower PCL concentration of 7.5% (w/v) resulted in microfibers with bead defects. The average diameter of fibers increased at higher voltage and the distance of tip to collector. Further investigation was performed by the incorporation of nanosized hydroxyapatite (nHA) into microfibers. The incorporation of 10% (w/w) nHA with 7.5% (w/v) PCL solution produced submicron sized beadless fibers. The microfibrous scaffolds were evaluated using various techniques. Biodegradable PCL and nHA/PCL could be promising for tissue engineering scaffold application.


Sign in / Sign up

Export Citation Format

Share Document