scholarly journals ANALISIS STABILITAS DINDING PENAHAN TANAH DENGAN PERKUATAN BRONJONG PADA JALAN TOL ULUJAMI – PONDOK RANJI RAMP BINTARO VIADUCT

2019 ◽  
Vol 1 (1) ◽  
pp. 91-100
Author(s):  
Maria Febe ◽  
Imam Hariadi Sasongko

Pada Jalan Tol Ulujami – Pondok Ranji STA 03+150 terdapat sebuah jembatan yang opritnya mengalami penurunan yang menyebabkan ketidaknyamanan saat melintas di bahu jalannya. Penyebab penurunan tersebut diduga akibat adanya pergerakan struktur tanah bawah jalan sehingga menimbulkan terjadinya ketidakstabilan bangunan diatasnya. Tujuan studi adalah untuk mengetahui nilai faktor keamanan dinding penahan tanah dengan perkuatan bronjong terhadap kelongsoran, stabilitas geser, guling, dan daya dukung tanah, serta penurunan. Perhitungan tekanan tanah dinding ini menggunakan Teori Rankine. Untuk perhitungan stabilitas terhadap daya dukung tanah menggunakan persamaan Terzaghi. Perhitungan stabilitas dinding terhadap kelongsoran menggunakan metode Fellenius dan perangkat lunak Plaxis 8.6. Penurunan yang dihitung adalah penurunan konsolidasi primer dan sekunder. Hasil perhitungan stabilitas pada dinding penahan gravitasi didapatkan bahwa dimensi dinding tersebut tidak aman terhadap geser dan guling yaitu Fgl = 0,110 ≤ 1,5 dan Fgs = 0,205 ≤ 1,5. Serta penurunan yang terjadi sebesar 57,8 cm selama 62,704 tahun. Dari hasil perhitungan faktor keamanan stabilitas guling dan geser pada dinding penahan gravitasi tersebut, maka direncanakan perbesaran dimensi dinding agar aman terhadap geser dan guling. Didapati faktor keamanannya terhadap geser dan guling menjadi Fgs = 2,225 ≥ 1,5 dan Fgl = 1,740 ≥ 1,5.Kata kunci: dinding penahan tanah, bronjong, stabilitas dinding penahan tanah Bridge at STA 03+150 Ulujami – Pondok Ranji toll road has an approach settlement reduces its service and traffic may disturbed significantly. Settlement probably triggered by soil structure movement at the bottom of the road. The instability occurred and finally structure above damaged. The aim of the study was to calculate the safety factor of retaining wall strengthened with gabion against sliding, shear, overturning, and bearing capacity failure as well as its settlement. The calculation of safety factor against shear and overtuning conducted using Rankine Theory, while bearing capacity calculation done by uses Terzaghi. Calculations of sliding using Fellenius method and Plaxis 8.6 software. The writer also calculate settlement, both at primary and secondary consolidations. The results of stability calculation of gravity wall were as follows: safety factor against overtuning was 0,110 and shear 0,205 respectively, while settlement was 57,8 cm for 62,704 years. After the calculation mention above, in which all of the aspects calculated was not safe, the gravity wall then be redesigned as seen in the figure and the stability increase become 2,225 for shear 1,740 for overturning stability respectively. Using minimum allowable safety factor as 1,5 for all calculations, the gravity wall is now safe.Keywords: retaining walls, gabion, stability of retaining wall

2018 ◽  
Vol 1 (3) ◽  
pp. 76-82
Author(s):  
Wihardi Wihardi ◽  
Munirwansyah Munirwansyah ◽  
Sofyan M. Saleh

Road infrastructure is very important and is a key enabler for the economy. If the road infrastructure was damaged or had various problems such as sliding, the movement of goods and passengers will be hampered and delayed to the acceleration of development in the local area. The landslide and movement of groundwater is a problem that often occurs repeatedly on some streets. Therefore, it is necessary to study the strengthening of the slopes at the bottom of the road construction with retaining wall. This study aims to analyze slope stability by getting numbers Safety Factor (FK). The analysis is used to analyze the stability of slopesusing the finite element method with the help of software Plaids, The scope of this review includes the calculation of slope stability at the national road from Banda Aceh - Medan Sta. 83 + 185 Mount Selawah. The results of slope stability analysis on the existing condition by using Plaxis software at the point of a review is not safe (FK 1.25). Thus, it is done handling the retaining wall, installation of anchors. Based on the analysis of slope stability after being given the strengthening of the slopes with a retaining wall and the installation of anchors using Plaxis software under the influence of traffic load in an unsafe condition (FK 1.25). Then additional handling is done by changing the angle of the slope so that the value of the safety factor (FK) 1.25.


CERUCUK ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 69
Author(s):  
Adelina Melati Sukma

On the construction of green open space Jl. Kinibalu Banjarbaru There is a 6 meters tall slope beneath which the river is lined up during the rainy season and makes the slope exposed by water plus the absence of load or traffic on it make the pore figures on the land is large. Therefore, for protection reason, there is a soil alignment in the construction of soil retaining walls. The planned ground retaining wall type is cantilever and gabion. The stability analysis of the ground retaining walls is done manually and with the help of the Geoslope/W 2018 software. The value of the stability of the style against the bolsters, sliding, and carrying capacity of the soil using manual calculations for cantilever type and Netlon qualifies SNI 8460:2017. And for the overall stability calculation using Geoslope/W 2018 software obtained safety factor (SF) > 1.5. From the analysis, the design of planning can be used because it is safe against the dangers of avalanche.


2014 ◽  
Vol 971-973 ◽  
pp. 2141-2146
Author(s):  
Tian Zhong Ma ◽  
Yan Peng Zhu

Using the frame supporting structure of pre-stressed anchor bolt seismic strengthening technology reinforced the instability of gravity retaining wall. Earth pressure of retaining wall in seismic reinforcement after shall take between active and static earth pressure for the form of the distribution . In this paper, based on the limit equilibrium theory, and the whole stability for retaining walls is analysis, the theoretical formula of the stability safety factor between stability against slope and overturning safety factor is derived. By calculation and comparative analysis with an example, the stability safety factor of gravity retaining wall with introducing this strengthening technology is improved obviously. Keywords: frame anchor structure; seismic strengthening; anti-slip and anti-overturning; stability coefficient;


2020 ◽  
Vol 14 (1) ◽  
pp. 70-74
Author(s):  
Erwin Syaiful Wagola ◽  
◽  
Mentari Rasyid ◽  

The construction of a retaining wall must be based on a stability calculation and safety factors because errors that occur can be no good. A retaining wall construction can be said to be safe if it is fulfilled. The purpose of this study was to analyze the stability of cantilever type soil retaining walls against shifting, overturning, and soil bearing strength. overturning, and strongly supporting the soil. The method of collecting and collecting data in the field used the field observation method.Wall stability analysis using analytical Finite Element Method based software assistance. The results of data analysis show that the stability of the wall is safe against shear forces, rolling forces and the carrying capacity of the soil with a Safety Factor value of 4.05, 1.50, and 4.67.While the Out Put results from the application also show that the retaining wall at the Masohi City Landfill is still quite safe with a Safety Factor value of 1.80.


2021 ◽  
Vol 15 (1) ◽  
pp. 22
Author(s):  
Suhudi Suhudi ◽  
Simplisius Ehok

AbstractWavy topographical conditions with high rainfall intensity cause cantilever type retaining wall on Jalan Brigjen Abdul Manan Wijaya in Ngroto village, Pujon District, Malang Regency, which borders the Konto River avalanche. The stability of the retaining wall can be expressed as Fs (Savety Factor). Factor value the security that is reviewed is the Fs bolster, namely the safety factor against the overthrowing force, the Fs shear is the safety factor against the shear force at the base of the retaining wall, Fs, the bearing capacity of the soil is a factor safety of soil bearing capacity. The purpose of this evaluation is to determine the wall planning cantilever type retaining wall and evaluate the stability of cantilever type retaining wall against the dangers of rolling, shearing, soil bearing capacity and knowing the budget plan for wall planning Cantilever type retaining wall. The result of this evaluation shows the cantilever retaining wall with dimensions H = 7, B = 3.5 Ta = 0.5 Tb = 0.7 D = 1 declared safe with the safety value for normal water level fs slide 1.8> 1.5 (safe), fs roll 2> 1.5 (safe), fs ground bearing capacity 186.8> 4752.86 (safe). Water face flood fs shear 2,6> 1,5 (safe) fs rolling 2,3> 1,5 (safe) fs soil bearing capacity 186.8> 4752.86 (safe). The total cost required for the construction of a cantilever type retaining wall of length 20 m T = 7 width 3.5 m for Rp. 290,570,000.Keywords: Retaining walls, Dimensions, Stability of retaining walls


2019 ◽  
Vol 2 (2) ◽  
pp. 162-171
Author(s):  
Muhammad Yunus ◽  
Zharin F Syahdinar

In the construction of public works infrastructure, especially road infrastructure works, bridge construction work plays a very important role besides the construction of the road itself. One of the things that deserves the attention of the planners in designing a bridge structure is the design of the substructure, this is because the substructure determines the quality and service life of a bridge. In addition, at present many cases of bridge structure failures are caused by failures of the substructure in holding the load acting on the bridge. The aim of this study was to determine the stability of the abutment to sliding failure and the stability of the abutment to overturning failure on the construction of the Aifa bridge in the Bintuni Bay Regency. From the results of the calculation of the stability of the abutments to sliding failure, when the abutments are in normal conditions was obtained safety factor (SF) values 1,907, in condition of the upper structure load is not working was obtained safety factor (SF) values 1,045 and during earthquake conditions was obtained safety factor (SF) values 1,419. While the results of the calculation of the stability of the abutments to overturning failure, when the abutments are in normal conditions was obtained safety factor (SF) values 4,640, in condition of the the upper structure load is not working was obtained safety factor (SF) values 1,658 and during earthquake conditions was obtained safety factor (SF) values 3,159. Because obtained safety factor (SF) values greater than 1, so that the stability of the abutment is safe to sliding failure and overturning failure.


2004 ◽  
Vol 36 (4) ◽  
pp. 1853
Author(s):  
A. Σφέικος ◽  
Θ. Στιμάρατζης ◽  
A. Κίλιας ◽  
Β. Χρηστάρας

The Acheloos river diversion project includes also works which improve the condition of the infrastructure network in the area. One of them was the improvement of a section at the Mouzaki - Arta national road. The road is developed through geological formations of the Pindos Zone. In the Argithea area, Karditsa County, it cuts through Cretaceous limestone bearing Calpionella. This formation develops high and steep slopes, over 50 m high. It consists of thin to medium bedded limestone, showing locally chert intercalations, and gradational transition to siliceous limestone. Thin silt or clay layers separate bedding. The formations is strongly folded and intensively jointed. The initial design proposed the construction of a slope with H:V relationship of 1:4 and benches every 20 m. The designed geometry was during and soon after excavation destroyed, due to sliding of rock particles. A new geometry was developed possessing a more stable state of dynamic equilibrium. Our task is to investigate and simulate the behavior of this formation. Based on data from both laboratory analysis and literature we ascribed the limestone formation values for its geotechnical properties. Using these values we estimate the values for the Safety Factor for the geometrical features of the slope. We control the stability of the slope using both rock mechanics and soil mechanic methods. The results point that rock formations, like the Cretaceous limestone which exhibit variation in their composition, and high contrast between the geotechnical characteristics values of the composing elements, may be considered as a material with soil properties. The Safety Factor calculation using these assumptions for the above mentioned slope, resulted a geometry close to the one developed. Therefore we conclude that such rock material and formations may successfully be simulated as materials with soil geotechnical behavior.


Author(s):  
S.A. Wandira ◽  
A. Rahayu

Tawaeli - Toboli is one of the road that often undergo landslide. Most of these roads are in a mountainous area with high steep slopes and poor soil conditions. The road conditions worsened, especially in rainy season resulting the citizen do not know anywhere that is prone to landslides such as in Km 16 to 17. The purpose of this study was to analyze slope stability using bioengineering methods, determine the shear strength of soil without plant roots and soil with plant roots and to determine the potential for landslides that will occur. Bioengineering is used to increase the strength of the soil, and stabilize slopes and reduce erosion on slopes. The slope stability calculation using the Bishop slice method. The calculating of safety factor analyzed using the Slope / W application and manually. Soil samples were taken from 3 (three) points and the soil strength parameters,  soil cohesion and friction angle, were obtained through laboratory testing. Tests were carried out using rootless and rooted soil samples. In addition, direct field observations were made to obtain slope angles and slope heights. The results showed that the parameters of soil shear strength, cohesion and friction angle increased with the presence of plant roots. The results of the slope stability analysis show that the conditions of the slope are stable at slope 1 (Km 16) and slope 3 (Km 17) with a safety factor greater than 1.5. While slope 2 (Km 16 +300) has the potential for landslides as a safety factor of less than 1.5. The use of bioengineering increases the safety factor to be greater than 1.5. The calculation of the value of the safety factor using the Slope / W program and the Bishop manual is not much different, but the calculation time with the Slope / W program is faster


UKaRsT ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 236
Author(s):  
Akhmudiyanto Akhmudiyanto ◽  
Paulus Pramono Rahardjo ◽  
Rinda Karlinasari

One of the causes of on-road collapse slopes is traffic load. Slope failure by road loads usually occurs due to several factors such as soil type, rainfall, land use. This study aims to determine landslide and slope repair performance using bore pile and ground anchor on Cipali Toll Road KM 103. The research method used in this study is the Finite element method. In this research, data collection, modeling parameter determination, slope stability analysis, slope reinforcement analysis, and reinforcement design were carried out with variations in bore pile and ground anchor dimensions. The software program used is a finite element program in the form of PLAXIS to analyze slope stability and estimate the slope failure area. The result of the study is that the R-Value inter is 0.25 with a 1.0341 safety factor. Best repair performance obtained from the addition of reinforcement with ground anchor 2 layer on bore pile 2 with a distance of 2 meters increased the safety factor to 1,913; Borepile capacity calculation with the calculation of normal force and moment iteration, the largest occurs in the DPT (Retaining Wall) stage with a normal load of -37.9 and a moment force of -471.15 which is still able to be borne by bore pile 1. The result of this study is expected to be benchmark and repair material to improve slope stability at km 103 Tol Cipali


2018 ◽  
Vol 11 (2) ◽  
pp. 60
Author(s):  
Winda Harsanti, Moch. Khamim

Weir is a river transverse building that is served to raise the river water. Cianten River is one of the rivers that need this building, because the water level planned to be used for micro power plant is not sufficient. The planned weir dimension needs to be analyzed for its stability. From the analysis results it is known that for stability against bolsters and soil bearing capacity has a safety factor above the minimum number. But for the stability of the shear and the crawl is below the minimum safety number. To solve this problem, the foundation of weir needs to be lengthened.                Keywords: safety factor, stability, weir


Sign in / Sign up

Export Citation Format

Share Document