scholarly journals Backcalculated Modulus of Asphalt Concrete

2019 ◽  
Vol 8 (4) ◽  
pp. 127-136
Author(s):  
Md Rashadul Islam ◽  
Rafiqul Tarefder ◽  
Mesbah U. Ahmed

Asphalt Concrete (AC) is considered a spatially homogeneous material when analyzing and designing asphalt pavement. However, the modulus of AC along the wheel path and the middle of the wheel path may not be the same considering the continuous compaction by wheel loading. This study conducted monthly Falling Weight Deflectometer (FWD) tests to determine the AC modulus of a pavement section on Interstate 40 (I-40) in the state of New Mexico, USA from 2013 to 2015. The AC moduli on the wheel path, on the middle of the wheel path, on the shoulder with friction course, and on the shoulder without friction course are determined. It is mentionable that the driving lane and the shoulder have the same geometry, materials, and compaction effort. Results show that the modulus along the wheel path is almost the same as that of along the middle of the wheel path. The shoulder without friction course has a modulus greater than that of the lane AC modulus and the shoulder with the friction course. In addition, FWD backcalculated moduli at different temperatures are compared with the dynamic modulus values of the AC layer. It is found that the dynamic modulus at a loading frequency of 5 Hz is 1.7 to 1.9 times the backcalculated AC modulus.

2020 ◽  
Vol 47 (7) ◽  
pp. 846-855
Author(s):  
Dandan Cao ◽  
Changjun Zhou ◽  
Yanqing Zhao ◽  
Guozhi Fu ◽  
Wanqiu Liu

In this study, the field falling weight deflectometer (FWD) data for asphalt pavement with various base types were backcalculated through dynamic and static backcalculation approaches, and the effectiveness of backcalculation approaches was studied. Asphalt concrete (AC) was treated as a viscoelastic material and the complex modulus was obtained using the dynamic approach. The dynamic modulus at a fixed frequency was computed for comparison purposes. The coefficient of variance and the compensating layer effect were assumed as two characteristics for the effectiveness of backcalculation approaches. The results show that the layer property from the dynamic backcalculation approach for different stations were more consistent and showed smaller coefficient of variance, which were more appropriate for the characterization pavement behavior. The elastic moduli from the static approach were more variable and exhibited a compensating layer effect in which a portion of the modulus of one layer was backcalculated into other layers. The dynamic approach is more effective than static approaches in backcalculation of layer properties.


2013 ◽  
Vol 723 ◽  
pp. 141-148 ◽  
Author(s):  
Jian Guo Wei ◽  
Bin Wang

To evaluate the pre and post change of structure strength of old asphalt pavement field hot regeneration, we use the portable falling weight deflectometer method (PFWD) and benkelman beam method (BB) respectively to do the field test research. The field test researches rely on the ANXIN highway old asphalt pavement field hot regeneration project. We got the data about pre and post regenerations asphalt pavement static bending deflection (l0), PFWD dynamic deflection (lp) and PFWD dynamic modulus (EP). The correlation analysis among static bending deflection, PFWD dynamic deflection and PFWD dynamic modulus suggest that PFWD method is a more stable and reliable method than BB method and PFWD method can be a new evaluation technology for the old asphalt pavement field hot regenerations pavement strength.


2012 ◽  
Vol 39 (7) ◽  
pp. 771-778 ◽  
Author(s):  
Jean-Pascal Bilodeau ◽  
Guy Doré

The falling weight deflectometer is a pavement analysis tool that is now widely used in the pavement engineering field. Using the backcalculation process and the measured deflection basin, the layers moduli can be determined and a mechanistic analysis of the pavement can be made. A new approach is proposed to bypass the necessity of the backcalculation by allowing a direct estimation of the tensile strain at the bottom of asphalt concrete using the deflection basin. A model based on a finite element theoretical pavement analysis is proposed for this purpose. Complementary models have been developed to use the proposed models without having to determine the layers moduli. The proposed model to estimate the tensile strain at the bottom of the asphalt concrete layers is validated and calibrated using data obtained on an instrumented experimental site.


Author(s):  
Nathan D. Bech ◽  
Julie M. Vandenbossche

There are several methods for determining the stiffness of asphalt concrete in an existing pavement. The three primary methods are: dynamic modulus testing in the laboratory, predictive equations, and falling weight deflectometer (FWD) testing. Asphalt over asphalt (AC/AC) overlay design procedures allow the use of multiple methods to characterize fatigue damage in the existing asphalt concrete. Therefore, understanding the difference between these methods is critical for AC/AC overlay design. The differences between the methods for determining asphalt concrete stiffness and how these differences are related to FWD load magnitude and asphalt temperature are examined. Data from the Federal Highway Administration’s Long-Term Pavement Performance Program (LTPP) are used in this investigation. It is found that the stiffness determined through FWD testing and backcalculation is generally less than that estimated using the Witczak predictive equation and binder aging models. Furthermore, it is found that both FWD load magnitude and asphalt temperature have a significant effect on the difference between backcalculated and estimated stiffness of asphalt concrete. Backcalculated stiffness increases relative to estimated stiffness as FWD load and temperature increase. These effects must be considered when multiple methods of determining asphalt concrete stiffness are used interchangeably for overlay design.


Author(s):  
J. Groenendijk ◽  
C. H. Vogelzang ◽  
A. Miradi ◽  
A. A. A. Molenaar ◽  
L. J. M. Dohmen

Two full-depth gravel asphalt concrete (AC) pavements of 0.15- and 0.08-m thickness on a sand subgrade were loaded with 4 million and 0.65 million repetitions of a 75-kN super-single wheel load using the linear tracking device (LINTRACK), a heavy-traffic simulator. Frequent measurements of asphalt strains, temperatures, rutting, cracking, and falling weight deflectometer (FWD) were made. The data analysis of the rutting measurements indicates that all rutting could be ascribed to subgrade deformation (secondary rutting). No evidence was found of shear deformation within the asphalt layer (primary rutting). The data analysis also indicates that the observed rutting performance of the LINTRACK test sections (to a maximum rut depth of 18 mm) coincides closely with the average criterion from the Shell Pavement Design Manual, which relates subgrade strain to allowable number of strain repetitions.


Author(s):  
Claude Villiers ◽  
Reynaldo Roque ◽  
Bruce Dietrich

The transverse profilograph has been recognized as one of the most accurate devices for the measurement of rut depth. However, interpretation of surface transverse profile measurements poses a major challenge in determining the contributions of the different layers to rutting. A literature review has shown that the actual rutting mechanism can be estimated from a surface transverse profile for determination of the relative contribution of the layers to rutting. Unfortunately, much of the research yielded no verification or data. In addition, some techniques presented cannot be used if the rut depth is not well pronounced. Other techniques may be costly and time-consuming. The present research developed an approach that integrates ( a) falling weight deflectometer and core data along with 3.6-m transverse profile measurements to assess the contributions of different pavement layers to rutting and ( b) identifies the presence (or absence) of instability within the asphalt surface layer. This approach can be used regardless of the magnitude of the rut depth. On the basis of the analysis conducted, absolute rut depth should not be used to interpret the performance of the asphalt mixture. In addition, continued instability may not result in an increase in rut depth because the rutted basin broadens as traffic wander compacts or moves the dilated portion of the mixture. The approach developed appears to provide a reasonable way to distinguish between different sources of rutting. The conclusions drawn from analysis of the approach agreed well with observations from the trench cuts taken from four sections.


2017 ◽  
Vol 23 (5) ◽  
pp. 661-671 ◽  
Author(s):  
Nader SOLATIFAR ◽  
Amir KAVUSSI ◽  
Mojtaba ABBASGHORBANI ◽  
Henrikas SIVILEVIČIUS

This paper presents a simple method to determine dynamic modulus master curve of asphalt layers by con­ducting Falling Weight Deflectometer (FWD) for use in mechanistic-empirical rehabilitation. Ten new and rehabilitated in-service asphalt pavements with different physical characteristics were selected in Khuzestan and Kerman provinces in south of Iran. FWD testing was conducted on these pavements and core samples were taken. Witczak prediction model was used to predict dynamic modulus master curves from mix volumetric properties as well as the bitumen viscosity characteristics. Adjustments were made using FWD results and the in-situ dynamic modulus master curves were ob­tained. In order to evaluate the efficiency of the proposed method, the results were compared with those obtained by us­ing the developed procedure of the state-of-the-practice, Mechanistic-Empirical Pavement Design Guide (MEPDG). Re­sults showed the proposed method has several advantages over MEPDG including: (1) simplicity in directly constructing in-situ dynamic modulus master curve; (2) developing in-situ master curve in the same trend with the main predicted one; (3) covering the large differences between in-situ and predicted master curve in high frequencies; and (4) the value obtained for the in-situ dynamic modulus is the same as the value measured by the FWD for a corresponding frequency.


Sign in / Sign up

Export Citation Format

Share Document