scholarly journals Synthesis of Lithium Mangan Oxide (LiMn2O4) Using Solution Method for Lithium Ion Battery Catodes Materials

2020 ◽  
Vol 2 (1) ◽  
pp. 42-49
Author(s):  
Slamet Priyono

Synthesis of Lithium Manganese Oxide (LiMn2O4) for Lithium Ion Battery Cathodes with Solution Method has been conducted. This experiment was carried out using the solution method. In this study, the synthesis was carried out by varying the calcination temperature. The raw materials used were Lithium Acetate (C2H3O2Li), Manganese Acetate (C4H6MnO4.4H2O), Hydrochloric Acid (HCl), and Ethanol (C2H5OH) as solvents which were dissolved to become LiMn2O4 precursors. Synthesis was carried out at calcination temperatures of 600oC, 700oC and 800oC, for 4 hours then pounded with a mortar until smooth. The characterization includes: The results of the STA test at 280oC-380oC showed a mass decrease of 11.9973% due to the release of mass of water vapor and decomposition of C4H6MnO4.4H2O raw material. XRD analysis shows that the increase in peak temperature of the LiMn2O4 phase intensity is getting sharper, the peak showing the impurity Li2O phase decreases. SEM analysis results show that the higher the calcination temperature, the larger the particle size is formed, because in the calcination process the densification process occurs.

2014 ◽  
Vol 492 ◽  
pp. 370-374
Author(s):  
Xiao Zhen Liu ◽  
Guang Jian Lu ◽  
Xiao Zhou Liu ◽  
Jie Chen ◽  
Han Zhang Xiao

Pr doped SnO2 particles as negative electrode material of lithium-ion battery are synthesized by the coprecipitation method with SnCl4·5H2O and Pr2O3 as raw materials. The structure of the SnO2 particles and Pr doped SnO2 particles are investigated respectively by XRD analysis. Doping is achieved well by coprecipitation method and is recognized as replacement doping or caulking doping. Electrochemical properties of the SnO2 particles and Pr doped SnO2 particles are tested by charge-discharge and cycle voltammogram experimentation, respectively. The initial specific discharge capacity of Pr doped SnO2 the negative electrode materials is 676.3mAh/g. After 20 cycles, the capacity retention ratio is 90.5%. The reversible capacity of Pr doped SnO2 negative electrode material higher than the reversible capacity of SnO2 negative electrode material. Pr doped SnO2 particles has good lithiumion intercalation/deintercalation performance.


2020 ◽  
Author(s):  
Chris Berry

The lithium ion supply chain is set to grow in both size and importance over the coming decade due to government-led efforts to decarbonize economies and declining costs of lithium ion batteries used in electronics and transportation. With forecasts of demand for lithium chemicals alone forecast to grow by three times later this decade, at least $10B USD is needed to flow into the upstream supply chain to ensure an efficient and timely build-out. Significant additional capital is needed for other portions of the supply chain such as other raw materials, cathode or anode production, and battery cell manufacturing. Recent exogenous shocks such as the US-China trade war and coronavirus disease 2019 (COVID-19) pandemic have made securing adequate capital for the supply chain a difficult challenge. Without the steady stream of funding for new mine and chemical conversion capacity, widespread adoption of electric vehicles (EVs) could be put at risk. This paper discusses the current structure of the lithium ion supply chain with a focus on raw material production and the need for and challenges associated with securing adequate capital in an industry that has, to date, not experienced such a robust growth profile.


Author(s):  
Adelyna Oktavia ◽  
Kurnia Sembiring ◽  
Slamet Priyono

Hospho-material of olivine, LiMnPO4 identified as promising for cathode material generation next Lithium-ion battery and has been successfully synthesized by solid-state method with Li2Co3, 2MnO2, 2NH4H2PO4 as raw material. The influence of initial concentration of precursors at kalsinasi temperatures (400-800 ° C) flows with nitrogen. The purity and composition phase verified by x-ray diffraction analysis (XRD), scanning electron microscopy (SEM), spectroscopy, energy Dispersive x-ray Analysis (EDS), Raman spectra. General investigation shows that there is a correlation between the concentration of precursors, the temperature and the temperature of sintering kalsinasi that can be exploited to design lithium-ion next generation.


Author(s):  
Anar Kareeva ◽  
Uilesbek Besterekov ◽  
Perizat Abdurazova ◽  
Ulzhalgas Nazarbek ◽  
Irina Pochitalkina ◽  
...  

Abstract The article presents the results of studies of the process of obtaining NPK fertilizer from low-grade phosphate raw materials with P2O5 of about 18%. Phosphate raw materials were leached with a mixture of nitric-phosphoric acids with the addition of potassium carbonate, which serves as a source of potassium in the final product. The main parameters determined were the content of the main nutrients P2O5:N:K2O, temperature and time of the leaching process. According to the graphical method, the “apparent” activation energy of the heterogeneous process is found, which is equal to 3.8 kJ/mol indicates the intradiffusion nature of the process. Methods of chemical analysis, scanning electron microscopy and XRD analysis were used for a comprehensive study of raw materials and final products.


2010 ◽  
Vol 160-162 ◽  
pp. 554-557
Author(s):  
Gui Yang Liu ◽  
Jun Ming Guo ◽  
Yan Nan Li ◽  
Bao Sen Wang

Spinel LiMn2O4 powders have been prepared at 500 for 5h by solution combustion synthesis in water or ethanol system, using lithium and manganese acetate as raw materials and no fuels. The structure and morphology of the products have been analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The electrochemical performance has been charged or discharged in coin-type battery. XRD analysis indicates that the purity and crystallinity of the product prepared in ethanol are much better than these of the product prepared in water. SEM investigation indicates that the particles of the product prepared in ethanol are smaller and more dispersed than these of the products prepared in water. The product prepared in ethanol also exhibits better electrochemical performance than that of the product prepared in water. The initial discharge capacity of the product prepared in ethanol is 120mAh/g, and remains 110mAh/g after 20 cycles, at a current density of 50mA/g and in the voltage range of 3.2-4.35V.


2020 ◽  
Vol 8 ◽  
Author(s):  
Duygu Karabelli ◽  
Steffen Kiemel ◽  
Soumya Singh ◽  
Jan Koller ◽  
Simone Ehrenberger ◽  
...  

The growing number of Electric Vehicles poses a serious challenge at the end-of-life for battery manufacturers and recyclers. Manufacturers need access to strategic or critical materials for the production of a battery system. Recycling of end-of-life electric vehicle batteries may ensure a constant supply of critical materials, thereby closing the material cycle in the context of a circular economy. However, the resource-use per cell and thus its chemistry is constantly changing, due to supply disruption or sharply rising costs of certain raw materials along with higher performance expectations from electric vehicle-batteries. It is vital to further explore the nickel-rich cathodes, as they promise to overcome the resource and cost problems. With this study, we aim to analyze the expected development of dominant cell chemistries of Lithium-Ion Batteries until 2030, followed by an analysis of the raw materials availability. This is accomplished with the help of research studies and additional experts’ survey which defines the scenarios to estimate the battery chemistry evolution and the effect it has on a circular economy. In our results, we will discuss the annual demand for global e-mobility by 2030 and the impact of Nickel-Manganese-Cobalt based cathode chemistries on a sustainable economy. Estimations beyond 2030 are subject to high uncertainty due to the potential market penetration of innovative technologies that are currently under research (e.g. solid-state Lithium-Ion and/or sodium-based batteries).


2020 ◽  
Vol 6 (4) ◽  
pp. 761-774
Author(s):  
Alex Norgren ◽  
Alberta Carpenter ◽  
Garvin Heath

Abstract The global growth of clean energy technology deployment will be followed by parallel growth in end-of-life (EOL) products, bringing both challenges and opportunities. Cumulatively, by 2050, estimates project 78 million tonnes of raw materials embodied in the mass of EOL photovoltaic (PV) modules, 12 billion tonnes of wind turbine blades, and by 2030, 11 million tonnes of lithium-ion batteries. Owing partly to concern that the projected growth of these technologies could become constrained by raw material availability, processes for recycling them at EOL continue to be developed. However, none of these technologies are typically designed with recycling in mind, and all of them present challenges to efficient recycling. This article synthesizes and extends design for recycling (DfR) principles based on a review of published industrial and academic best practices as well as consultation with experts in the field. Specific principles developed herein apply to crystalline-silicon PV modules, batteries like those used in electric vehicles, and wind turbine blades, while a set of broader principles applies to all three of these technologies and potentially others. These principles are meant to be useful for stakeholders—such as research and development managers, analysts, and policymakers—in informing and promoting decisions that facilitate DfR and, ultimately, increase recycling rates as a way to enhance the circularity of the clean energy economy. The article also discusses some commercial implications of DfR. Graphical Abstract


Sign in / Sign up

Export Citation Format

Share Document