scholarly journals PENGOLAHAN LANJUT LIMBAH CAIR KELAPA SAWIT SECARA AEROBIK MENGGUNAKAN EFFECTIVE MICROORGANISM GUNA MENGURANGI NILAI TSS

2012 ◽  
Vol 1 (2) ◽  
pp. 27-30 ◽  
Author(s):  
Irvan ◽  
Bambang Trisakti ◽  
Michael Vincent ◽  
Yohannes Tandean

Palm oil mill effluent (POME) production in Indonesia is estimated around 28.7 million ton/year. Generally, POME treatment is done conventionally by using facultative ponds. Aside from the vast usage of land and operational cost, this system also emits greenhouse gases. Eventhough, POME is a potential raw resource in producing biogas. Previous researches were done with anaerobic process to produce biogas, but the waste produced still haven’t met the standard quality control requirements. The total suspended solid (TSS) contained in the waste produced from the anaerobic process is still around 400 mg/L, which is the reason why aerobic process is still necessary to drop the number of TSS contained by using effective microorganism. From the result, a 10 day HRT aerobic process can reduce the number of TSS to around 200 mg/L.

2013 ◽  
Vol 2 (3) ◽  
pp. 51-54
Author(s):  
Yohannes Tandean ◽  
Michael Vincent ◽  
Irvan, Bambang Trisakti

Palm oil production in Indonesia is estimated around 28 million tonnes per annum. As this number increases, the waste generated from the process which generally called as palm oil mill effluent (POME)  increases as well. In Indonesia, POME treatment is being carried out conventionally by using facultative ponds system, which is high in operational cost, uses up a vast amount of land and generates greenhouse gas, Methane (CH4) as product which is usually burnt away. From previous researches done, POME has been treated anaerobically to produce biogas, but the effluent from these processes have not yet met the standard quality control required to be released to the environment. Which is why it still needs to be treated aerobically to fulfill the standar quality control so as to be released to the environment. From the research done by using continuous stirred tank reaktor and adding effective microorganism (EM4), the final VSS value reached was around 100 mg/L with 10 days HRT.


2015 ◽  
Vol 74 (7) ◽  
Author(s):  
Aziatul Niza Sadikin ◽  
Mohd Ghazali Mohd Nawawi ◽  
Norasikin Othman ◽  
Roshafima Rasit Ali ◽  
Umi Aisah Asli

The aim of this research is to evaluate the feasibility of the fibrous media for removal of total suspended solid and oil grease from palm oil mill effluent (POME). Wet lay-up method was adopted for filter fabrication where empty fruit bunches (EFB) were matted together with chitosan in non-woven manner. Chitosan-filled filter media were tested for their ability to reduce Total Suspended Solids (TSS) and Oil & Grease (O&G) from palm oil mill effluent. Filtration process results indicated that chitosan-filled filter media filtration only removed up to 28.14% of TSS and 29.86% of O&G. 


2012 ◽  
Vol 610-613 ◽  
pp. 363-367
Author(s):  
Tipakorn Suwannarat ◽  
Nipon Pisutpaisal ◽  
Siriorn Boonyawanich

The purpose of current study was to examine the ability of electrocoagulation in decreasing chemical oxygen demand (COD) and total suspended solid (TSS) constituted in palm oil mill effluent. Bench-scale batch reactor containing two aluminum or steel plates (10 cm width × 30 cm height with 0.1 cm thickness) serving as electrodes with the interval distance of 3 cm was set up. The wastewater with COD concentration of 68,425 mg L-1 was treated in the reactor under the varied direct currents (0.3-1.3 A) and contact time (30-120 min). Sodium chloride was added to the wastewater to obtain the final concentration of 2 g L-1 (conductivity of 10 ms) prior to being fed into the reactor. The results showed that higher treatment efficiency when the aluminum was used as electrodes compared to the steel. COD removal efficiency was directly proportional to the contact time. The maximum COD and TSS removal observed at 1.3 A current input and 60 min contact time are 74.1 and 77.0%, respectively.


2020 ◽  
Vol 997 ◽  
pp. 139-149
Author(s):  
Yong Yin Sia ◽  
Ivy Ai Wei Tan ◽  
Mohammad Omar Abdullah

Palm oil processing is a multi-stage operation which generates large amount of palm oil mill effluent (POME). Due to its potential to cause environmental pollution, POME must be treated prior to discharge. Electrocoagulation (EC), adsorption (AD), combined EC and AD, and EC integrated with AD have demonstrated great potential to remove various organic and inorganic pollutants from wastewater. Up to date, no study has been found on POME treatment using EC-AD hybrid process. Therefore, this study aims to investigate the feasibility of applying EC-AD hybrid process as an alternative treatment for POME. The EC-AD hybrid process achieved higher removal of total suspended solid (TSS), chemical oxygen demand (COD) and colour as compared to EC and AD stand-alone processes. The EC-AD hybrid process reduced 79% of TSS, 44% of COD and 89% of colour from POME. The adsorption kinetics of TSS, COD and colour were best interpreted using pseudo-second-order model, which indicated that the adsorption rate was mainly controlled by chemisorption. Overall, the EC-AD hybrid process could be recommended as an alternative treatment for POME.


2009 ◽  
Vol 62-64 ◽  
pp. 759-762
Author(s):  
F.A. Aisien ◽  
A.A. Ojarikre ◽  
E.T. Aisien

Batch treatment of palm oil mill effluent (POME) was investigated using physical, chemical and biological methods. Physiochemical parameters such as pH, sulphate (SO42-), total dissolved solids (TDS), total suspended solid (TSS), chloride ion (Cl-), biological oxygen demand (BOD), chemical oxygen (COD) and metals (Fe2+, Zn2+, Ca2+ and Mg2+) concentrations were determined using American Public Health Association (APHA) methods. The results revealed that significant treatment was achieved at each stage. However, the biological method proved to be the best with percentage reductions of 45.6%, 97.6%, 71,0%, 50.1%, 80.4%, 93.8%, 72.0%, 85.4%, 93.2%, 77.7%, 86.2% and 85.7% for pH, SO42-, TS, TDS, TSS, Cl-, BOD, COD, Fe2+, Zn2+, Ca2+ and Mg2+ respectively. The concentrations after treatment were in conformity with the minimum acceptable standard of FEPA and WHO.


Author(s):  
Noor Shaidatul Lyana Mohamad-Zainal ◽  
Norhayati Ramli ◽  
Nurhasliza Zolkefli ◽  
Nurul Asyifah Mustapha ◽  
Mohd Ali Hassan ◽  
...  

2014 ◽  
Vol 3 (1) ◽  
pp. 32-37
Author(s):  
Fristyana Sosanty Lubis, Irvan ◽  
Dedy Anwar ◽  
Basril Amirza Harahap ◽  
Bambang Trisakti

The objective of this study is to design an organic liquid fertilizer manufacturing process from palm oil mill effluent (POME) at pilot scale. Materials used were effluent from further processing of biogas fermentation from POME and starter (mixture of molasses, yeast and effective microorganism). Variables measured were total solid (TS), volatile solid (VS), total suspended solid (TSS), volatile suspended solid (VSS), and chemical oxygen demand (COD), in addition, analysis content of liquid fertilizers was performed. The research consisted of production of starters and fermentation process. Loading rate was started from hydraulic retention time (HRT) 2,500 days and bioreactor performance was observed at HRT 100, 90 and 80 days. The results showed that COD concentration of bioreactor effluent decreased from 8,600 to 1,580 mg/l and from analysis content, liquid fertilizers are composed of nitrogen 0.14%, P2O5 0.05%, K2O 0.07%, MgO 0.01%, CaO 0.001mg/l, C-Organic 0,12%, and C/N Ratio 0.86.


2020 ◽  
Vol 231 (8) ◽  
Author(s):  
Arezoo Fereidonian Dashti ◽  
Hamidi Abdul Aziz ◽  
Ali Huddin Ibrahim ◽  
Mohammad Ali Zahed

2015 ◽  
Vol 4 (3) ◽  
pp. 47-51
Author(s):  
Deril Clinton ◽  
Netti Herlina

Sugar palm or commonly called as Aren (Arenga pinnata) is a multipurpose crop. The widely use of sugar palm for  food industries, generates sugar palm leather waste which can be used as a biomass for biogas production. This study aims to determine the quality and the quantity of biogas made from a mixed of sugar palm leather waste and water using batch anaerobic digester system and to evaluate the economic potential of biogas production from the mixture. Research carried out by mixing sugar palm leather with water in a ratio of 1:13; 1:11,5; 1:10; 1:9; and 1:8 (w/w) with cow dung as a starter mixed with water in an anaerobic digester batch system. Observed variables are biogas, biogas composition, Total Suspended Solid (TSS) and Chemical Oxygen Demand (COD) and analyzed fermentation slurry for every 3 days. pH for this study is set in the range of 6,4-8. The largest volume of biogas production is found at a ratio 1:11,5 (w/w)  mixture of sugar palm leather and water that is 637 mL for total waste 1,5 L with 60,983 % methane contain. TSS removal percentage obtained was 88,10 %and percentage of COD removal by 82,43%. Slurry produces unqualified TSS and COD with the standard  quality of liquid waste. The economic potential of sugar palm leather waste and water for producing biogas is beneficial.


2014 ◽  
Vol 3 (1) ◽  
pp. 1-4
Author(s):  
Julika Sitinjak ◽  
Janwarisman Purba ◽  
Fatimah

Research about influence the addition of trace metal Fe against allowance for the solid content of palm oil mill effluent using Hybrid Upflow Anaerobic Sludge Blanket Reactor aim to know the additionof trace metal Fe against allowance for the solid content of palm oil mill effluent using HUASB reactor based on removal of Chemical Oxygen Demand (COD), Total Suspended Solid (TSS) dan Volatile Suspended Solid (VSS). The reactor isa reactor with a combination of suspended growth reactor in the bottom and attached growth reactor at the top. The material used is palm oil mill effluent and inoculum derived from PKS Pagar Merbau. Test parameters to observed are COD, TSS and VSS. The optimum conditions obtained on the organic load is 17024 mg/l with the addition of Fe is 0.5 mg/l so that obtained COD reduction is 85.891%, TSS reduction is 86.047% and VSS reduction is 36.566%.


Sign in / Sign up

Export Citation Format

Share Document