scholarly journals In vivo and in vitro Chondrocyte Metabolism in Relationship to the Developemnt of Tibial Dyschondroplasia in Broiler Chickens

Author(s):  
Roland M. Leach ◽  
Mark Pines ◽  
Carol V. Gay ◽  
Shmuel Hurwitz

Skeletal deformities are a significant financial and welfare problem for the world poultry industry. Tibial dyschondroplasia (TD) is the most prevalent skeletal abnormality found in young broilers, turkeys and ducks. Tibial dyschondroplasia results from a perturbation of the sequence of events in the epiphyseal growth plate, the tissue responsible for longitudinal bone growth. The purpose of this investigation was to test the hypothesis that TD was the result of a failure of growth plate chondrocytes to differentiate and express the chemotactic molecules required for cartilage vascularization. In this investigation in situ hybridization and immunocytochemical techniques were used to study chondrocyte gene products associated with cartilage maturation and vascularization such as osteopontin, osteonectin, type X collagen, and alkaline phosphatase. All markers were present in the growth plate tissue anter or to the TD lesion but were greatly diminished in the TD lesion. Thus, rather than not acquiring the markers for hypertrophy, it appears that the growth plate chondrocytes reach a certain stage of hypertrophy and then de-differentiate into cells which resemble chondrocytes in the prehypertrophic zone. Similar patterns were observed in all TD tissues examined whether the lesions were spontaneous or induced by dietary treatments or genetic selection. The decrease in gene expression can at least be partially explained by the fact that many of the dysplastic chondrocytes show classic signs of apoptosis. These results provide an explanation for the observation that a variety of genes show reduced expression in the TD lesion when examined by in situ hybridization. This would suggest that future research should focus on the earliest detectable stages in the development of TD and examine endocrine and autocrine factors which cause chondrocytes to de-differentiate and undergo premature apoptosis.

1978 ◽  
Vol 89 (2) ◽  
pp. 263-275 ◽  
Author(s):  
Marie-Thérèse Corvol ◽  
Marie-France Dumontier ◽  
Raphael Rappaport ◽  
Harvey Guyda ◽  
Barry I. Posner

ABSTRACT Chondrocyte cultures were prepared from rabbit growth plate (GPC) and articular (ARC) chondrocytes. These two cell types have distinct morphological characteristics. The cells reached maximum numbers by days 10 and 21 for ARC and GPC, respectively. The proteoglycans (PG) contained in the cellular pool were extracted and purified by DEAE cellulose chromatography. The effect of a partially purified somatomedin peptide with insulin-like activity on [35S] sulphate incorporation into PG was evaluated. In both ARC and GPC a significant stimulation of [35S]sulphate uptake into PG subunits was obtained with 1 ng Eq./ml of somatomedin peptide. In order to obtain the same stimulatory effect with porcine insulin, a 1000-fold greater concentration was required. The electrophoretic patterns of the PG subunits on acrylamide-agarose electrophoresis were identical on control incubations and after stimulation with the somatomedin peptide. These data demonstrate in vitro biological activity of this peptide on well differentiated articular and epiphyseal growth plate chondrocytes in culture. These cultures appear to provide a sensitive biological assay for somatomedin peptides.


Development ◽  
2001 ◽  
Vol 128 (11) ◽  
pp. 2119-2129 ◽  
Author(s):  
Malika Sahni ◽  
Regina Raz ◽  
J. Douglas Coffin ◽  
David Levy ◽  
Claudio Basilico

Unregulated FGF receptor signaling results in bone malformations that affect both endochondral and intramembranous ossification, and is the basis for several genetic forms of human dwarfism. FGF signaling inhibits chondrocyte proliferation and we have previously shown that the transcription factor STAT1 mediates the growth inhibitory effect of FGF in vitro. We provide genetic evidence that STAT1 is a modulator of the negative regulation of bone growth by FGF in vivo. We crossed Stat1−/− mice with a transgenic mouse line overexpressing human FGF2 (TgFGF). TgFGF mice exhibit phenotypes characterized by chondrodysplasia and macrocephaly, which affect endochondral and intramembranous ossification. We found that the chondrodysplasic phenotype of these mice results both from reduced proliferation and increased apoptosis of growth plate chondrocytes. Loss of STAT1 function in TgFGF mice led to a significant correction of the chondrodysplasic phenotype, but did not affect the skull malformations. The reduced proliferation of TgFGF growth plate chondrocytes, as well as their excessive apoptosis, were restored to near-normal levels in the absence of STAT1 function. Unregulated FGF signaling in TgFGF mice also induced apoptosis in calvarial osteoblasts that was not, however, corrected by the absence of STAT1. Detailed analysis of Stat1−/− growth plates uncovered a transient phenotype, characterized by an expansion of the proliferative zone and by acceleration of longitudinal bone growth, that attenuated as the animals grew older. These results document an essential role for STAT1 in FGF-mediated regulation of cell growth that is specific to the epiphyseal growth plate.


2019 ◽  
Vol 12 (576) ◽  
pp. eaaw4847 ◽  
Author(s):  
Nianchao Qian ◽  
Atsuhiko Ichimura ◽  
Daisuke Takei ◽  
Reiko Sakaguchi ◽  
Akihiro Kitani ◽  
...  

During endochondral ossification of long bones, the proliferation and differentiation of chondrocytes cause them to be arranged into layered structures constituting the epiphyseal growth plate, where they secrete the cartilage matrix that is subsequently converted into trabecular bone. Ca2+ signaling has been implicated in chondrogenesis in vitro. Through fluorometric imaging of bone slices from embryonic mice, we demonstrated that live growth plate chondrocytes generated small, cell-autonomous Ca2+ fluctuations that were associated with weak and intermittent Ca2+ influx. Several genes encoding Ca2+-permeable channels were expressed in growth plate chondrocytes, but only pharmacological inhibitors of transient receptor potential cation channel subfamily M member 7 (TRPM7) reduced the spontaneous Ca2+ fluctuations. The TRPM7-mediated Ca2+ influx was likely activated downstream of basal phospholipase C activity and was potentiated upon cell hyperpolarization induced by big-conductance Ca2+-dependent K+ channels. Bones from embryos in which Trpm7 was conditionally knocked out during ex vivo culture exhibited reduced outgrowth and displayed histological abnormalities accompanied by insufficient autophosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in the growth plate. The link between TRPM7-mediated Ca2+ fluctuations and CaMKII-dependent chondrogenesis was further supported by experiments with chondrocyte-specific Trpm7 knockout mice. Thus, growth plate chondrocytes generate spontaneous, TRPM7-mediated Ca2+ fluctuations that promote self-maturation and bone development.


2005 ◽  
Vol 186 (1) ◽  
pp. 241-249 ◽  
Author(s):  
Ola Nilsson ◽  
Robert D Mitchum ◽  
Lenneke Schrier ◽  
Sandra P Ferns ◽  
Kevin M Barnes ◽  
...  

The overall body size of vertebrates is primarily determined by longitudinal bone growth at the growth plate. With age, the growth plate undergoes programmed senescence, causing longitudinal bone growth to slow and eventually cease. Indirect evidence suggests that growth plate senescence occurs because stem-like cells in the growth plate resting zone have a finite proliferative capacity that is gradually exhausted. Similar limits on replication have been observed when many types of animal cells are placed in cell culture, an effect known as the Hayflick phenomenon. However, we found that the number of population doublings of rabbit resting zone chondrocytes in culture did not depend on the age of the animal from which the cells were harvested, suggesting that the mechanisms limiting replicative capacity of growth plate chondrocytes in vivo are distinct from those in vitro. We also observed that the level of DNA methylation in resting zone chondrocytes decreased with age in vivo. This loss of methylation appeared to occur specifically with the slow proliferation of resting zone chondrocytes in vivo and was not observed with the rapid proliferation of proliferative zone chondrocytes in vivo (i.e. the level of DNA methylation did not change from the resting zone to the hypertrophic zone), with proliferation of chondrocytes in vitro, or with growth of the liver in vivo. Thus, the overall level of DNA methylation decreases during growth plate senescence. This finding is consistent with the hypothesis that the mechanism limiting replication of growth plate chondrocytes in vivo involves loss of DNA methylation and, thus, loss of DNA methylation might be a fundamental biological mechanism that limits longitudinal bone growth in mammals, thereby determining the overall adult size of the organism.


1996 ◽  
Vol 109 (5) ◽  
pp. 1119-1131
Author(s):  
R.J. Wardale ◽  
V.C. Duance

Collagen expression in growth plate cartilage derived from broiler chickens with tibial dyschondroplasia was studied and compared with samples from unaffected birds. Normal growth plate contains 12% collagen (dry weight) and dyschondroplastic growth plate 19% collagen compared with articular cartilage, which contains 55%. Dyschondroplastic growth plate collagens were more resistant to extraction by pepsin treatment than were those from unaffected growth plate. Normal and dyschondroplastic growth plate cartilages contain similar amounts of type I collagen (5% of the total collagen) but dyschondroplastic growth plate cartilage contains slightly less type II and type XI collagens, and significantly more type X collagen (25% as compared to 11%) than in normal growth plate. The levels of the mature collagen cross-link, hydroxylysyl-pyridinoline, are very low in normal growth plate but are six times higher in dyschondroplastic lesions. Immunolocalisation studies show that there is little change to the normal patterns of collagen organisation in dyschondroplastic growth plate. Investigation of metalloproteinase activity showed there to be a reduction in MMP-2 levels in dyschondroplastic growth plate compared to normal growth plate. In vitro studies on articular, normal growth plate and dyschondroplastic growth plate chondrocytes cultured in alginate or on plastic revealed differences between the cell types. When plated on plastic, articular chondrocytes rapidly assume a fibroblastic morphology. In contrast, normal growth plate chondrocytes retain their polygonal morphology whereas chondrocytes derived from dyschondroplastic cartilage initially exhibit both fibroblastic and polygonal phenotypes but gradually change to totally fibroblastic. These morphological changes are reflected by the collagen synthesis in vitro. Chondrocytes derived from normal articular cartilage synthesised collagen types I, II and X when cultured in alginate but type X synthesis was lost when cultured on plastic. Chondrocytes derived from normal growth plate cartilage synthesised predominantly type X collagen when cultured in either system. Chondrocytes derived from dyschondroplastic growth plate exhibited a similar phenotype to normal growth plate chondrocytes when cultured in alginate beads, but showed signs of dedifferentiation with reduced type X collagen and increased type I collagen when plated on plastic. These results suggest that the chondrocytes in dyschondroplastic growth plate cartilage are at a different stage of maturity than normal resulting in a cartilage that is failing to turn over at a normal rate.


Author(s):  
C.C. Whitehead ◽  
J.S. Rennie ◽  
C. Farquharson ◽  
R.H. Fleming

The skeletal disorders causing the most severe welfare problems in different classes of poultry are bone growth disorders in young birds and bone fragility in older laying hens.Angular and rotational deformities of leg bones are widespread in young birds, especially in broilers but also in turkeys. Dyschondroplasia is a widely observed defect in the growth plates of leg bones. It occurs most noticeably in the growth plate of the proximal tibia, the fastest growing bone in the young broiler, and is frequently referred to as tibial dyschondroplasia (TD). Resulting from a failure of growth plate chondrocytes to differentiate fully, it leads to a build up of a mass of prehypertrophic chondrocytes. The lesions develop between the ages of 2 and 5 weeks and can regress thereafter.The importance of TD in causing bone deformity was assessed by carrying out sequential radiography of the proximal tibias of a group of 20 broilers growing up to 16 weeks of age. At this time the tibias were dissected and the angulation of the proximal end (tibial plateau angle, TP°) was measured. The severities and durations of the TD lesions, assessed by radiography, were found to be highly correlated with the TP°. Birds with abnormally large TP° were obviously lame. These observations confirm that TD can lead to distortion of bone growth and that this can contribute to lameness in broilers (Lynch et al., 1992).


2019 ◽  
Vol 51 (9) ◽  
pp. 1-10
Author(s):  
Sehee Choi ◽  
Pu-Hyeon Cha ◽  
Hyun-Yi Kim ◽  
Kang-Yell Choi

Abstract Researchers have shown increased interest in determining what stimulates height. Currently, many children undergo precocious puberty, resulting in short stature due to premature closure of the growth plate. However, the current approach for height enhancement is limited to growth hormone treatment, which often results in side effects and clinical failure and is costly. Although recent studies have indicated the importance of paracrine signals in the growth plate for longitudinal bone growth, height-stimulating agents targeting the signaling pathways involved in growth plate maturation remain unavailable in the clinic. The Wnt/β-catenin pathway plays a major role in the maturation of growth plate chondrocytes. In this study, by using an ex vivo tibial culture system, we identified indirubin-3′-oxime (I3O) as a compound capable of enhancing longitudinal bone growth. I3O promoted chondrocyte proliferation and differentiation via activation of the Wnt/β-catenin pathway in vitro. Intraperitoneal injection of I3O in adolescent mice increased growth plate height along with incremental chondrocyte maturation. I3O promoted tibial growth without significant adverse effects on bone thickness and articular cartilage. Therefore, I3O could be a potential therapeutic agent for increasing height in children with growth retardation.


1999 ◽  
Vol 77 (4) ◽  
pp. 235-249 ◽  
Author(s):  
P de los Rios ◽  
D J Hill

The insulin-like growth factors (IGFs) are important in the regulation of normal fetal musculoskeletal growth and development, and their actions have been shown to be modulated by IGF binding proteins (IGFBPs). Because the anatomical distribution of IGFBPs is likely to dictate IGF bioavailability, we determined the cellular distribution and expression of IGF-I, IGF-II, and IGFBP-1 to IGFBP-6 in epiphyseal growth plates of the fetal sheep, using immunocytochemistry and in situ hybridization. Little mRNA for IGF-I was detectable within the growth plates, but mRNA for IGF-II was abundant in germinal and proliferative chondrocytes, although absent from some differentiating chondrocytes and hypertrophic cells. Immunohistochemistry for IGF-I and IGF-II showed a presence of both peptides in all chondrocyte zones, including hypertrophic cells. Immunoreactive IGFBP-2 to -5 were localized within the germinal and proliferative zones of chondrocytes, but little immunoreactivity was present within the columns of differentiating cells. IGFBP immunoreactivity again appeared in hypertrophic chondrocytes. IGFBP mRNA in chondrocytes of the epiphyseal growth plate was below the detectable limit of in situ hybridization. However, low levels of mRNAs for IGFBP-2 to -6 were detected by the reverse transcriptase polymerase chain reaction. A co-localization of IGFBPs with IGF peptides in intact cartilage suggests that they may regulate IGF bioavailability and action locally. To test this hypothesis, monolayer cultures of chondrocytes were established from the proliferative zone of the growth plate, and were found to release immunoreactive IGF-II and to express mRNAs encoding IGFBP-2 to -6. Exogenous IGFBP-3, -4, and -5 had an inhibitory action on IGF-II-dependent DNA synthesis. IGFBP-2 had a biphasic effect, potentiating IGF-II action at low concentrations but inhibiting DNA synthesis at equimolar or greater concentrations relative to IGF-II. Long R3 IGF-I, which has a reduced binding affinity for many IGFBPs, was more potent than native IGF-I in promoting DNA synthesis by chondrocytes. Our findings suggest that locally produced IGF-II and IGF-I derived from the circulation can influence fetal epiphyseal chondrogenesis, and that this may be modulated locally by multiple IGFBP expression.Key words: epiphyseal growth plate, insulin-like growth factor, insulin-like growth factor binding protein, chondrocyte, cartilage.


2007 ◽  
Vol 292 (6) ◽  
pp. R2216-R2224 ◽  
Author(s):  
Stav Simsa ◽  
Aharon Hasdai ◽  
Harel Dan ◽  
Efrat Monsonego Ornan

Matrix metalloproteinases (MMPs) play a crucial role in growth-plate vascularization and ossification by processes involving proteolytic cleavage and remodeling of the extracellular matrix (ECM). Their regulation in the growth plate is crucial for normal vs. impaired matrix assembly. Tibial dyschondroplasia (TD), a prevalent skeletal abnormality in avian species, is characterized by the formation of a nonvascularized, nonmineralized plaque in the growth plate. Here, we show differential regulation of MMPs in cultured chondrocytes from chickens and turkeys; retinoic acid (RA) elevated MMP-2 activity in both species, but only in chicken did it induce MMP-9 activity. In contrast, phorbol 12-myristate 13-acetate (PMA) treatment induced MMP-9 activity in turkey chondrocytes but not in those of chicken. Moreover, we found different developmental patterns of TD in chickens and turkeys in-vivo as lower concentrations of, and shorter exposure to thiram were required in chicken than in turkey for TD induction. Growth-plate cartilage taken from thiram-induced lesions had lower gelatinolytic and caseinolytic activities compared with normal cartilage. Likewise, thiram reduced MMP-2 and MMP-13 activity in both chicken and turkey chondrocytes in vitro, although 10-fold higher concentrations were required for this effect in the latter. Finally, the combined treatments of RA or PMA with thiram induced MMP-9 activity in turkey but not in chicken chondrocytes. Furthermore, RA combined with thiram synergistically upregulated its activity in turkey but not chicken chondrocytes. Taken together, these results suggest that mechanisms of MMP regulation differ in the growth plates of these closely related avian species, resulting in altered matrix assembly as exemplified by TD development.


Sign in / Sign up

Export Citation Format

Share Document