scholarly journals Assisted Migration

2018 ◽  
Author(s):  
Stephen Handler ◽  
Carrie Pike ◽  
Brad St. Clair ◽  
Hannah Abbotts ◽  
Maria Janowiak

Evidence suggests that species have responded individually during historic periods of dramatic climate change through geographic migrations to and from unique glacial refugia [1, 2, 3]. Recent research has demonstrated that many tree species are already undergoing distribution shifts in response to climate change, with different studies highlighting species that are moving poleward and higher in elevation [4], or moving east-west to track changes in moisture availability [5].

2015 ◽  
Vol 61 (2) ◽  
pp. 124-130 ◽  
Author(s):  
Dušan Gömöry ◽  
Roman Longauer ◽  
Diana Krajmerová

AbstractClimate change may endanger not only yield and fulfilling the social functions of European forests, but even the survival of several tree species. The study emphasises the complexity of climatic factors and physiological mechanisms, which may potentially endanger the persistence of tree populations and which cannot be reduced to problems of drought and temperature increase. A substantial inter-population variation in traits associated with the response to climatic stress, observed in provenance experiments, is a prerequisite for the choice of proper forest reproductive material (FRM) in reforestation as a strategy of climate-change mitigation. Assisted migration, i.e., transfer of FRM from source regions, currently characterised by such climate characteristics, which are expected in the target regions in the future, requires knowledge of key stress factors (depending on the climate scenario), physiological processes associated with the adaptation to this stress, identification of genes and eventually epigenetic mechanisms, controlling adaptation processes, and finally mapping of genetic and/or epigenetic variation in key genes. For most tree species, such information is not yet available. Therefore, assisted migration under such information uncertainty needs to be complemented by in situ gene conservation measures to preserve the possibility of reversing the effects of eventual erroneous decisions on FRM transfer.


Forests ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 9
Author(s):  
Cuauhtémoc Sáenz-Romero ◽  
Greg O'Neill ◽  
Sally N. Aitken ◽  
Roberto Lindig-Cisneros

Assisted migration of forest tree populations through reforestation and restoration is a climate change adaptation strategy under consideration in many jurisdictions. Matching climates in which seed sources evolved with near future climates projected for plantation sites should help reduce maladaptation and increase plantation health and productivity. For threatened tree species, assisted migration outside of the species range could help avert extinction. Here, we examine lessons, limitations, and challenges of assisted migration through the lens of three assisted migration field trials of conifers in Canada and Mexico: Pinus albicaulis Engelm., an endangered subalpine tree species in the mountains of western North America; the Picea glauca (Moench) Voss × P. engelmannii Parry ex Engelm hybrid complex, of great economic and ecological importance in western Canada, and Abies religiosa (Kunth) Schltdl. & Cham., a tree species that provides overwintering sites for the monarch butterfly. We conclude that: (a) negative impacts of climate change on productivity of Picea glauca × P. engelmannii may be mitigated by planting seed sources from locations that are 3 °C mean coldest month temperature warmer than the plantation; (b) it is possible to establish Pinus albicaulis outside of its current natural distribution at sites that have climates that are within the species’ modelled historic climatic niche, although developing disease-resistant trees through selective breeding is a higher priority in the short term; (c) Abies religiosa performs well when moved 400 m upward in elevation and local shrubs (such as Baccharis conferta Kunth) are used as nurse plants; (d) new assisted migration field trials that contain populations from a wide range of climates tested in multiple disparate climates are needed, despite the costs; and (e) where naturalization of a migrated tree species in recipient ecosystem is viewed as undesirable, the invasive potential of the tree species should be assessed prior to large scale establishment, and stands should be monitored regularly following establishment.


2019 ◽  
Vol 10 (1) ◽  
pp. 53-63
Author(s):  
Muhidin Šeho ◽  
Sezgin Ayan ◽  
Gerhard Huber ◽  
Gülzade Kahveci

Background and Purpose: Turkish hazel (Corylus colurna L.) has been overused because of its valuable wood. Recently, Turkish hazel has been found only in small isolated populations, and very small populations within its natural distribution area, so it has been protected under IUCN with the status "Least Concern (LC)". Therefore, the remaining Turkish hazel populations have a critical importance. Genetic conservation of this tree species plays a key role in sustainable forest development. There have been only a few studies of single populations, but an overview including all countries is still missing. The aim of this publication is to give an overview of ecological and economic importance of Turkish hazel, which is considered as a tolerant tree species to climate change, for dry and warm conditions in Central Europe. Materials and Methods: This review paper has been prepared based on the existing literature such as reports, theses, project documents and publications related to Turkish hazel. This paper applies a literature review of the concepts of: i) Distribution and threats of Turkish hazel, ii) Ecological and economic importance, iii) Regeneration, soil demand and shading tolerance, iv) Seed, seedling, plant production and planting, v) Competitiveness in forest communities, vi) Invasiveness and hybridization, and vii) Future stand mixtures. Results and Conclusions: This review paper should interest forest practitioners and scientists in all countries who work with this important and valuable tree species under climate change. At first, an inventory of all populations in each country is needed. For this purpose, research should focus on the cultivation of convenient provenances of Turkish hazel under climate change. Next, genetic differences should be determined in the laboratory using genetic markers. After the assessment of the phenotype and genotype of different provenances, it would be possible to recommend provenance for each ecological condition and assisted migration (AM). Main recommendations for each country are used for selecting and establishing gene conservation units (in-situ and ex-situ) and seed orchards that will ensure the survival of Turkish hazel, and for building the base for cultivation in the future. In addition, the results might be a basis for future provenance tests, plantations and possibilities of assisted migration attempts.


2015 ◽  
Vol 342 ◽  
pp. 21-29 ◽  
Author(s):  
M.M. Carón ◽  
P. De Frenne ◽  
J. Brunet ◽  
O. Chabrerie ◽  
S.A.O. Cousins ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document