scholarly journals ANALISIS KAPASITAS DAN KEKUATAN KONSTRUKSI BLADDER TANK PADA SIRKULASI AIR PANAS SISTEM ORC SOLAR KOLEKTOR R-134a

Author(s):  
Irsan Novianto ◽  
Yogi Sirodz Gaos ◽  
Hablinur Alkindi

<p>This study focused on component in the Organic Rankine Cycle (ORC), Bladder Tank. The calculation<br />method is based on the calculation stage of plate thickness to withstand the pressure caused by the<br />circulation of the ORC system. The material used is SA 106 with 12mm thickness, Shell length 600mm,<br />270mm inner diameter and 95mm Head length. From the calculation results obtained maximum<br />pressure on Shell = 253,8385 psi (17,7 bar g) and pressure at Head equal to = 249,6983 psi (17,2 bar<br />g). Bladder Tank Capacity of 38055622,5 mm³ (38,0556 Liter). From result of Pressure Drop simulation<br />got Head loss equal to = 0,00000066 m.</p>

Author(s):  
A.V. DOLOGLONYAN ◽  
V.T. MATVIIENKO

The subject of this article is methods of complicating of microgas turbine plants (MGTP) cycles in order to further increase their efficiency. The direction of a deeper utilization of the heat of exhaust gases of MGTP was chosen, turning it into work in the organic Rankine cycle (OCR) plant, as well as the use of local climatic cold resources. It has been established that the use of an additional steam turbine as part of the OCR combined MGTP allows to increase its efficiency from October to March on 2... 4% depending on the configuration of the basic MGTP, which ensures an increase in the average annual efficiency on 1... 2%. It is shown that the OCR plant on R-134a does not allow the full use of the temperature potential of the gases of the base MGTP, since the decomposition temperature is lower than the temperature of the gases of the base MGTP, therefore the efficiency of all configurations of combined MGTP using R- 134a is lower than the analogous ones using ammonia on 2... 5%.


2018 ◽  
Vol 70 ◽  
pp. 02002 ◽  
Author(s):  
Tadeusz Bohdal ◽  
Henryk Charun ◽  
Małgorzata Sikora

The paper presents the results of experimental investigation of Novec 649 refrigerant condensation in tube minichannels. This is a low-pressure refrigerant. This investigations are basis for flow structures visualization during condensation in pipe minichannels. The local and the average values of pressure drop (Δp/L) and heat transfer coefficient α in the whole range of the changes of vapour quality (x = 1 ÷ 0) were calculated. On the basis of the obtained test results there was illustrated the influence of the vapour quality x, the mass flux density G and the inner diameter of channel d changes on the studied parameters. These results were compared with the calculation results based on the dependencies of other authors.


2013 ◽  
Vol 393 ◽  
pp. 781-786 ◽  
Author(s):  
Aman M.I. bin Mamat ◽  
Wan Ahmad Najmi Wan Mohamed

Heat engines convert only approximately 20% to 50% of the supplied energy into mechanical work whereas the remaining energy is lost as rejected heat. Although some of the energy lost is intrinsic to the nature of an engine and cannot be fully overcome (such as energy lost due to friction of moving parts), a large amount of energy can potentially be recovered. This paper presents a heat transfer analysis of a WHE for recovering wasted exhaust energy whilst transferring energy to different organic working fluid used in the OrganicRankine Cycle. The types of considered fluids are R-134a, Propane and Ammonia. The results show that the Ammonia has the highesteffectiveness of 0.25. The maximum heat transferrate of 48.5 kW was recovered using the Ammonia at the exhaust gas temperature of 700°C.


Author(s):  
Murat Erbas ◽  
Mehmet Alper Sofuoglu ◽  
Atilla Biyikoglu ◽  
Ibrahim Uslan

In this study, low temperature Organic Rankine Cycle (ORC) systems with single and two-stage turbine are proposed for the production of electricity. The refrigerant R-134a is selected as working fluid based on peak temperature of the cycle for solar and geothermal applications. The design criteria of ORC system is introduced and explained in detail. The radial inflow turbine is selected to satisfy the design requirements. The cycle performance is taken as a key point in the design criteria. The system performance map is constructed based on both velocity triangles and approximate efficiency of turbine. The procedures for turbine and cycle design are introduced in detail. The components of cycle and turbine are modeled using baseline correlations via real gas tables and macros created on Excel for the refrigerant, R134a. Finally, the turbine geometry is optimized to attain maximum turbine efficiency via MATLAB optimization toolbox.


Thermo ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 77-105
Author(s):  
Tryfon C. Roumpedakis ◽  
Nikolaos Fostieris ◽  
Konstantinos Braimakis ◽  
Evropi Monokrousou ◽  
Antonios Charalampidis ◽  
...  

The present work focuses on the techno-economic assessment and multi-objective genetic algorithm optimization of small-scale (40 kWth input), solar Organic Rankine Cycle (ORC) systems driven by medium-to-high temperature (up to 210 °C) parabolic dish (PDC) and trough (PTC) collectors. The ORCs are designed to maximize their nominal thermal efficiency for several natural hydrocarbon working fluids. The optimization variables are the solar field area and storage tank capacity, with the goal of minimizing the levelized cost of produced electricity (LCoE) and maximizing the annual solar conversion efficiency. The lowest LCOE (0.34 €/kWh) was obtained in Athens for a high solar field area and low storage tank capacity. Meanwhile, the maximum annual solar conversion efficiencies (10.5–11%) were obtained in northern cities (e.g., Brussels) at lower solar field locations. While PTCs and PDCs result in similar efficiencies, the use of PTCs is more cost-effective. Among the working fluids, Cyclopentane and Cyclohexane exhibited the best performance, owing to their high critical temperatures. Notably, the systems could be more profitable at higher system sizes, as indicated by the 6% LCoE decrease of the solar ORC in Athens when the nominal heat input was increased to 80 kWth.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4967
Author(s):  
Shiyang Teng ◽  
Yong-Qiang Feng ◽  
Tzu-Chen Hung ◽  
Huan Xi

Cogeneration of heat and power systems based on the organic Rankine cycle (ORC-CHP) has been proven to be an effective way to utilize waste heat at medium and low temperatures. In this work, three ORC-CHP (combined heat and power based on organic Rankine cycle) systems are simulated and compared, including the SS (serial system), the CS (the condensation system), and the SS/CS. The multi-objective genetic algorithm (MOGA) is used to optimize the three systems respectively to achieve higher exergy efficiency and profit ratio of investment (PRI). The optimal thermal-economic performance is obtained. Twelve organic fluids are adopted to evaluate their performance as working fluids. The calculation results show that SS has the highest exergy efficiency, while SS/CS has the best economic performance. Compared with the highest exergy efficiency of SS and the best economic performance of SS/CS, CS will be the optimal solution considering these two objective functions. Under the optimal working conditions, SS has the highest thermal efficiency because it has the highest net power output. The components with the largest proportion of exergy destruction are the heat exchangers, which also has the highest cost.


Sign in / Sign up

Export Citation Format

Share Document