scholarly journals Report on parameterizing seasonal response patterns in primary- and net community production to ocean alkalinization

2021 ◽  
Author(s):  
Jan Taucher ◽  
Markus Schartau

We applied a 1-D plankton ecosystem-biogeochemical model to assess the impacts of ocean alkalinity enhancement (OAE) on seasonal changes in biogeochemistry and plankton dynamics. Depending on deployment scenarios, OAE should theoretically have variable effects on pH and seawater pCO2, which might in turn affect (a) plankton growth conditions and (b) the efficiency of carbon dioxide removal (CDR) via OAE. Thus, a major focus of our work is how different magnitudes and temporal frequencies of OAE might affect seasonal response patterns of net primary productivity (NPP), ecosystem functioning and biogeochemical cycling. With our study we aimed at identifying a parameterization of how magnitude and frequency of OAE affect net growth rates, so that these effects could be employed for Earth System Modell applications. So far we learned that a meaningful response parameterization has to resolve positive and negative anomalies that covary with temporal shifts. As to the intricacy of the response patterns, the derivation of such parameterization is work in progress. However, our study readily provides valuable insights to how OAE can alter plankton dynamics and biogeochemistry. Our modelling study first focuses at a local site where time series data are available (European Station for Time series in the Ocean Canary Islands ESTOC), including measurements of pH, concentrations of total alkalinity, dissolved inorganic carbon (DIC), chlorophyll-a and dissolved inorganic nitrogen (DIN). These observational data were made available by Andres Cianca (personal communication, PLOCAN, Spain), Melchor Gonzalez and Magdalena Santana Casiano (personal communication, Universidad de Las Palmas de Gran Canaria). The choice of this location was underpinned by the fact that the first OAE mesocosm experiment was conducted on the Canary Island Gran Canaria, which will facilitate synthesizing our modelling approach with experimental findings. For our simulations at the ESTOC site in the Subtropical North Atlantic we found distinct, non-linear responses of NPP to different temporal modes of alkalinity deployment. In particular, phytoplankton bloom patterns displayed pronounced temporal phase shifts and changes in their amplitude. Notably, our simulations suggest that OAE can have a slightly stimulating effect on NPP, which is however variable, depending on the magnitude of OAE and the temporal mode of alkalinity addition. Furthermore, we find that increasing alkalinity perturbations can lead to a shift in phytoplankton community composition (towards coccolithophores), which even persists after OAE has stopped. In terms of CDR, we found that a decrease in efficiency with increasing magnitude of alkalinity addition, as well as substantial differences related to the timing of addition. Altogether, our results suggest that annual OAE during the right season (i.e. physical and biological conditions), could be a reasonable compromise in terms of logistical feasibility, efficiency of CDR and side-effects on marine biota. With respect to transferability to global models, the complex, non-linear responses of biological processes to OAE identified in our simulations do not allow for simple parameterizations that can easily adapted. Dedicated future work is required to transfer the observed responses at small spatiotemporal scales to the coarser resolution of global models.

2009 ◽  
Vol 6 (12) ◽  
pp. 2985-3008 ◽  
Author(s):  
W. M. Kemp ◽  
J. M. Testa ◽  
D. J. Conley ◽  
D. Gilbert ◽  
J. D. Hagy

Abstract. The incidence and intensity of hypoxic waters in coastal aquatic ecosystems has been expanding in recent decades coincident with eutrophication of the coastal zone. Worldwide, there is strong interest in reducing the size and duration of hypoxia in coastal waters, because hypoxia causes negative effects for many organisms and ecosystem processes. Although strategies to reduce hypoxia by decreasing nutrient loading are predicated on the assumption that this action would reverse eutrophication, recent analyses of historical data from European and North American coastal systems suggest little evidence for simple linear response trajectories. We review published parallel time-series data on hypoxia and loading rates for inorganic nutrients and labile organic matter to analyze trajectories of oxygen (O2) response to nutrient loading. We also assess existing knowledge of physical and ecological factors regulating O2 in coastal marine waters to facilitate analysis of hypoxia responses to reductions in nutrient (and/or organic matter) inputs. Of the 24 systems identified where concurrent time series of loading and O2 were available, half displayed relatively clear and direct recoveries following remediation. We explored in detail 5 well-studied systems that have exhibited complex, non-linear responses to variations in loading, including apparent "regime shifts". A summary of these analyses suggests that O2 conditions improved rapidly and linearly in systems where remediation focused on organic inputs from sewage treatment plants, which were the primary drivers of hypoxia. In larger more open systems where diffuse nutrient loads are more important in fueling O2 depletion and where climatic influences are pronounced, responses to remediation tended to follow non-linear trends that may include hysteresis and time-lags. Improved understanding of hypoxia remediation requires that future studies use comparative approaches and consider multiple regulating factors. These analyses should consider: (1) the dominant temporal scales of the hypoxia, (2) the relative contributions of inorganic and organic nutrients, (3) the influence of shifts in climatic and oceanographic processes, and (4) the roles of feedback interactions whereby O2-sensitive biogeochemistry, trophic interactions, and habitat conditions influence the nutrient and algal dynamics that regulate O2 levels.


2021 ◽  
Vol 02 (02) ◽  
pp. 1-1
Author(s):  
Mieczysław Szyszkowicz ◽  

Each country has its own characteristics of COVID-19 infection trajectory and epidemic waves. Differences in government-implemented restrictions and social regulations result in variability of the virus transmissions and spread dynamics. This in turn results in various shapes of the growth function used to represent and describe the propagation of infection. Statistical methods are applied to fit non-linear functions to represent daily time-series data of the cumulative numbers of COVID-19 cases. The aim of this work is to fit various statistical models to the cumulative number of COVID-19 cases. Also to overview various types of the existed numerical methodologies. The data (since December 31, 2019) are available for almost each country in the world. As the examples, we used daily time-series data of the cumulative number of COVID-19 cases in Poland, Italy, Canada, and the USA. Non-linear approximations are applied to represent these time series data. The fitted functions allow us to investigate the dynamics of the pandemic. The constructed approximations are compositions of a few nonlinear functions, which describe the growth process of the COVID-19 infection trajectories. Two Gompertz functions and cumulative distribution functions (cdf) were estimated for the data of Poland and Italy (using the cdf for the normal distribution) and for the data of Canada and the USA (using the cdf for the gamma distribution). An analytical (parametric) functions representation of the number of COVID-19 cumulative cases is a useful tool to study the propagation of epidemics.


Author(s):  
Qiyao Wang ◽  
Haiyan Wang ◽  
Chetan Gupta ◽  
Aniruddha Rajendra Rao ◽  
Hamed Khorasgani

2021 ◽  
Vol 28 (2) ◽  
pp. 257-270
Author(s):  
Irewola Aaron Oludehinwa ◽  
Olasunkanmi Isaac Olusola ◽  
Olawale Segun Bolaji ◽  
Olumide Olayinka Odeyemi ◽  
Abdullahi Ndzi Njah

Abstract. In this study, we examine the magnetospheric chaos and dynamical complexity response to the disturbance storm time (Dst) and solar wind electric field (VBs) during different categories of geomagnetic storm (minor, moderate and major geomagnetic storm). The time series data of the Dst and VBs are analysed for a period of 9 years using non-linear dynamics tools (maximal Lyapunov exponent, MLE; approximate entropy, ApEn; and delay vector variance, DVV). We found a significant trend between each non-linear parameter and the categories of geomagnetic storm. The MLE and ApEn values of the Dst indicate that chaotic and dynamical complexity responses are high during minor geomagnetic storms, reduce at moderate geomagnetic storms and decline further during major geomagnetic storms. However, the MLE and ApEn values obtained from VBs indicate that chaotic and dynamical complexity responses are high with no significant difference between the periods that are associated with minor, moderate and major geomagnetic storms. The test for non-linearity in the Dst time series during major geomagnetic storm reveals the strongest non-linearity features. Based on these findings, the dynamical features obtained in the VBs as input and Dst as output of the magnetospheric system suggest that the magnetospheric dynamics are non-linear, and the solar wind dynamics are consistently stochastic in nature.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ayush Sinha ◽  
Raghav Tayal ◽  
Aamod Vyas ◽  
Pankaj Pandey ◽  
O. P. Vyas

Power has totally different attributes than other material commodities as electrical energy stockpiling is a costly phenomenon. Since it should be generated when demanded, it is necessary to forecast its demand accurately and efficiently. As electrical load data is represented through time series pattern having linear and non-linear characteristics, it needs a model that may handle this behavior well in advance. This paper presents a scalable and hybrid approach for forecasting the power load based on Vector Auto Regression (VAR) and hybrid deep learning techniques like Long Short Term Memory (LSTM) and Convolutional Neural Network (CNN). CNN and LSTM models are well known for handling time series data. The VAR model separates the linear pattern in time series data, and CNN-LSTM is utilized to model non-linear patterns in data. CNN-LSTM works as CNN can extract complex features from electricity data, and LSTM can model temporal information in data. This approach can derive temporal and spatial features of electricity data. The experiment established that the proposed VAR-CNN-LSTM(VACL) hybrid approach forecasts better than more recent deep learning methods like Multilayer Perceptron (MLP), CNN, LSTM, MV-KWNN, MV-ANN, Hybrid CNN-LSTM and statistical techniques like VAR, and Auto Regressive Integrated Moving Average (ARIMAX). Performance metrics such as Mean Square Error, Root Mean Square Error, and Mean Absolute Error have been used to evaluate the performance of the discussed approaches. Finally, the efficacy of the proposed model is established through comparative studies with state-of-the-art models on Household Power Consumption Dataset (UCI machine learning repository) and Ontario Electricity Demand dataset (Canada).


Sign in / Sign up

Export Citation Format

Share Document