scholarly journals An innovative dual-column system for heavy metallic ion sorption by natural zeolite

2021 ◽  
Author(s):  
Amanda L. Ciosek ◽  
Grace K. Luk

This study investigates the design and performance of a novel sorption system containing natural zeolite. The apparatus consists of packed, fixed-bed, dual-columns with custom automated controls and sampling chambers, connected in series and stock fed by a metering pump at a controlled adjustable distribution. The purpose of the system is to remove heavy metallic ions predominately found in acid mine drainage, including lead (Pb2+), copper (Cu2+), iron (Fe3+), nickel (Ni2+) and zinc (Zn2+), combined in equal equivalence to form an acidified total 10 meq/L aqueous solution. Reported trends on the zeolite’s preference to these heavy metallic ions is established in the system breakthrough curve, as Pb2+ >> Fe3+ > Cu2+ > Zn2+ >> Ni2+. Within a 3-h contact period, Pb2+ is completely removed from both columns. Insufficient Ni2+ removal is achieved by either column with the promptest breakthrough attained, as zeolite demonstrates the least affinity towards it; however, a 48.97% removal is observed in the cumulative collection at the completion of the analysis period. The empty bed contact times for the first and second columns are 20 and 30 min, respectively; indicating a higher bed capacity at breakthrough and a lower usage rate of the zeolite mineral in the second column. This sorption system experimentally demonstrates the potential for industrial wastewater treatment technology development. Keywords: zeolite; sorption; packed fixed-bed columns; heavy metallic ions; automated sampling design

2021 ◽  
Author(s):  
Amanda L. Ciosek ◽  
Grace K. Luk

This study investigates the design and performance of a novel sorption system containing natural zeolite. The apparatus consists of packed, fixed-bed, dual-columns with custom automated controls and sampling chambers, connected in series and stock fed by a metering pump at a controlled adjustable distribution. The purpose of the system is to remove heavy metallic ions predominately found in acid mine drainage, including lead (Pb2+), copper (Cu2+), iron (Fe3+), nickel (Ni2+) and zinc (Zn2+), combined in equal equivalence to form an acidified total 10 meq/L aqueous solution. Reported trends on the zeolite’s preference to these heavy metallic ions is established in the system breakthrough curve, as Pb2+ >> Fe3+ > Cu2+ > Zn2+ >> Ni2+. Within a 3-h contact period, Pb2+ is completely removed from both columns. Insufficient Ni2+ removal is achieved by either column with the promptest breakthrough attained, as zeolite demonstrates the least affinity towards it; however, a 48.97% removal is observed in the cumulative collection at the completion of the analysis period. The empty bed contact times for the first and second columns are 20 and 30 min, respectively; indicating a higher bed capacity at breakthrough and a lower usage rate of the zeolite mineral in the second column. This sorption system experimentally demonstrates the potential for industrial wastewater treatment technology development. Keywords: zeolite; sorption; packed fixed-bed columns; heavy metallic ions; automated sampling design


Clay Minerals ◽  
2015 ◽  
Vol 50 (1) ◽  
pp. 91-101 ◽  
Author(s):  
I. Nuić ◽  
M. Trgo ◽  
J. Perić ◽  
N. Vukojević Medvidović

AbstractThe removal of lead and zinc from a binary solution by fixed bed depths (40, 80 and 120 mm) of a natural zeolite was examined at a flow rate of 1 mL/min. The results obtained were fitted to the Bed Depth Service Time (BDST) model and the parameters of the model (q and k) were used to design a column system for flow rates of 2 and 3 mL/min at a bed depth of 80 mm. The experimental results were in excellent agreement with those predicted and experimental breakthrough curves for the binary systems were obtained. This approach facilitates the design of effective binary column processes without additional experimentation. Two major design parameters, the Empty Bed Contact Time (EBCT) and the zeolite usage rate, were calculated. The highest EBCT value of 13.56 min represents the optimal conditions for the binary (Pb+Zn) solution.


2021 ◽  
Author(s):  
Amanda L. Ciosek ◽  
Grace K. Luk

This study investigates the sorption of heavy metallic ions (HMIs), specifically lead (Pb2+), copper (Cu2+), iron (Fe3+), nickel (Ni2+) and zinc (Zn2+), by natural zeolite (clinoptilolite). These HMIs are combined in single-, dual-, triple-, and multi-component systems. The batch mode experiments consist of a total initial concentration of 10 meq/L normality for all systems, acidified to a pH of 2 by concentrated nitric (HNO3) acid. A zeolite dosage of 4 g per 100 mL of synthetic nitrate salt aqueous solution is applied, for a contact period of 5 to 180 min. Existing kinetic models on HMIs sorption are limited for multi-component system combinations. Therefore, this study conducts kinetic analysis by both reaction and diffusion models, to quantify the sorption process. The study concludes that the process correlates best with the pseudo-second-order (PSO) kinetic model. In the multi- component system combining all five HMIs, the initial sorption rate and theoretical equilibrium capacity are determined as 0.0033 meq/g.min and 0.1159 meq/g, respectively. This provides significant insight into the mechanisms associated with the sorption process, as well as contributing to the assessment of natural zeolite as a sorbent material in its application in industrial wastewater treatment. Keywords: sorption; kinetics; modelling; natural zeolite; heavy metallic ions; ICP-AES


2021 ◽  
Author(s):  
Amanda Lidia Alaica-Ciosek ◽  
Grace Luk

Our ecosystem is at risk by many anthropogenic activities, which include the release of industrial wastewater effluents laden with toxic heavy metals. There is a long history and a continued demand for proper evaluation and predication of water quality and management, in order to protect surrounding water resources and all living species. Undeniably, these pollutants (heavy metallic ions; HMIs) are a detrimental threat, and must be removed by advanced treatment technology prior to discharge. One such strategy would be by the process of sorption (adsorption/ion-exchange), which has advanced among researchers. Zeolites in particular have attracted researchers’ interests, being a naturally abundant, cost-effective mineral, with high cation exchange capacity and selectivity of certain metals. They are considered as a strong candidate for the removal of HMIs, and hold the potential for regeneration, recovery and reuse in pertinent industrial applications. This study investigates the sorption process by natural zeolite (clinoptilolite) of HMIs that are commonly found in industrial wastewater effluent, namely lead (Pb2+), copper (Cu2+), iron (Fe3+), nickel (Ni2+) and zinc (Zn2+). The HMIs are combined in acidic, synthetic simple-solute solutions of various (single-, dual-, triple-, multi-) component systems, in a controlled environment for improved quantification and identification of the important trends; in order to address existing limitations in multi-component system research. The analytical methodology of ICP-AES was employed for all quantitative detection and analyses. The project consists of four phases in the analysis of: (1) the effects of preliminary parameters and operative conditions (particle size, sorbent-to-sorbate dosage, influent concentration, contact time, set-temperature, and heat pre-treatment), (2) HMIs component system combinations and selectivity order, (3) kinetic modelling trends, and (4) the design of a packed, fixed-bed, dual-column sorption treatment system prototype. Under the testing conditions, this study demonstrates a strong correlation with the pseudosecond- order kinetic model in batch-mode analysis, as well as a relationship among the empty bed contact time, breakthrough capacity, and usage rate in continuous-mode investigations. A key sorption trend among the HMIs selected is well-established in all four phases as Pb2+>>Fe3+>Cu2+> Zn2+>>Ni2+; providing significant validation of this experimental design. The system prototype is a platform for the advancement of intelligent process controls. It is envisaged that this research will provide essential information to the industrial wastewater treatment industry for the design and implementation of innovative zeolite-based sorption technology. Keywords: Natural Zeolite; Clinoptilolite; Heavy Metallic Ions; Sorption Capacity; Adsorption; Ion-Exchange; Removal Efficiency; Operation Parameters; Selectivity; Kinetic Modelling; Packed Fixed-Bed Columns; ICP-AES; Automated Design; Intelligent Process Controls Platform.


2021 ◽  
Author(s):  
Amanda Lidia Alaica-Ciosek ◽  
Grace Luk

Our ecosystem is at risk by many anthropogenic activities, which include the release of industrial wastewater effluents laden with toxic heavy metals. There is a long history and a continued demand for proper evaluation and predication of water quality and management, in order to protect surrounding water resources and all living species. Undeniably, these pollutants (heavy metallic ions; HMIs) are a detrimental threat, and must be removed by advanced treatment technology prior to discharge. One such strategy would be by the process of sorption (adsorption/ion-exchange), which has advanced among researchers. Zeolites in particular have attracted researchers’ interests, being a naturally abundant, cost-effective mineral, with high cation exchange capacity and selectivity of certain metals. They are considered as a strong candidate for the removal of HMIs, and hold the potential for regeneration, recovery and reuse in pertinent industrial applications. This study investigates the sorption process by natural zeolite (clinoptilolite) of HMIs that are commonly found in industrial wastewater effluent, namely lead (Pb2+), copper (Cu2+), iron (Fe3+), nickel (Ni2+) and zinc (Zn2+). The HMIs are combined in acidic, synthetic simple-solute solutions of various (single-, dual-, triple-, multi-) component systems, in a controlled environment for improved quantification and identification of the important trends; in order to address existing limitations in multi-component system research. The analytical methodology of ICP-AES was employed for all quantitative detection and analyses. The project consists of four phases in the analysis of: (1) the effects of preliminary parameters and operative conditions (particle size, sorbent-to-sorbate dosage, influent concentration, contact time, set-temperature, and heat pre-treatment), (2) HMIs component system combinations and selectivity order, (3) kinetic modelling trends, and (4) the design of a packed, fixed-bed, dual-column sorption treatment system prototype. Under the testing conditions, this study demonstrates a strong correlation with the pseudosecond- order kinetic model in batch-mode analysis, as well as a relationship among the empty bed contact time, breakthrough capacity, and usage rate in continuous-mode investigations. A key sorption trend among the HMIs selected is well-established in all four phases as Pb2+>>Fe3+>Cu2+> Zn2+>>Ni2+; providing significant validation of this experimental design. The system prototype is a platform for the advancement of intelligent process controls. It is envisaged that this research will provide essential information to the industrial wastewater treatment industry for the design and implementation of innovative zeolite-based sorption technology. Keywords: Natural Zeolite; Clinoptilolite; Heavy Metallic Ions; Sorption Capacity; Adsorption; Ion-Exchange; Removal Efficiency; Operation Parameters; Selectivity; Kinetic Modelling; Packed Fixed-Bed Columns; ICP-AES; Automated Design; Intelligent Process Controls Platform.


2021 ◽  
Author(s):  
Amanda L. Ciosek ◽  
Grace K. Luk

This study investigates the sorption of heavy metallic ions (HMIs), specifically lead (Pb2+), copper (Cu2+), iron (Fe3+), nickel (Ni2+) and zinc (Zn2+), by natural zeolite (clinoptilolite). These HMIs are combined in single-, dual-, triple-, and multi-component systems. The batch mode experiments consist of a total initial concentration of 10 meq/L normality for all systems, acidified to a pH of 2 by concentrated nitric (HNO3) acid. A zeolite dosage of 4 g per 100 mL of synthetic nitrate salt aqueous solution is applied, for a contact period of 5 to 180 min. Existing kinetic models on HMIs sorption are limited for multi-component system combinations. Therefore, this study conducts kinetic analysis by both reaction and diffusion models, to quantify the sorption process. The study concludes that the process correlates best with the pseudo-second-order (PSO) kinetic model. In the multi- component system combining all five HMIs, the initial sorption rate and theoretical equilibrium capacity are determined as 0.0033 meq/g.min and 0.1159 meq/g, respectively. This provides significant insight into the mechanisms associated with the sorption process, as well as contributing to the assessment of natural zeolite as a sorbent material in its application in industrial wastewater treatment. Keywords: sorption; kinetics; modelling; natural zeolite; heavy metallic ions; ICP-AES


Proceedings ◽  
2018 ◽  
Vol 2 (20) ◽  
pp. 1293
Author(s):  
Marian Holub ◽  
Magdalena Balintova ◽  
Zdenka Kovacova

The development of human society after 18th century is associated with metals. Technology of extraction and processing of heavy metals is essential for many areas of industry. Naturally, the extraction, processing and cleaning of impurities give the metals not only a new form, but also cause their intensive distribution in the environment, which represents a huge threat. Countries of the middle Europe, where extraction of mineral resources takes place a long period, have to solve the problems of mine wastewater. Finding of the new and cheap ways of these wastewater treatment can increase the quality of the environment in the affected areas. Sorption techniques belong to an effective and cost acceptable methods for remove of heavy metals from aqueous environment. The presented paper describes the adsorption behavior of Slovak natural zeolite in fixed-bed column system. In order to determine its applicability for mine drainage treatment, copper removal from model sulfuric acid solutions (pH 4) was studied.


1994 ◽  
Vol 29 (9) ◽  
pp. 213-223 ◽  
Author(s):  
Sandra K. Kaiser ◽  
Richard R. Dague

The “temperature-phased anaerobic biofilter” or TPAB process (U.S. Patent pending), is a new high-rate anaerobic treatment system that includes a thermophilic (56°C) biofilter connected in series with a mesophilic (35°C) biofilter providing for two-temperature, two-phase treatment. Three TPAB systems of different thermophilic:mesophilic reactor size ratios were operated at system HRTs of 24 hrs, 36 hrs, and 48 hrs to characterize performance and to determine if an optimum size ratio exists between the thermophilic and mesophilic phases. The three TPAB systems achieved SCOD reductions in excess of 97% and TCOD reductions in excess of 90% for a synthetic milk substrate over a range of system COD loadings from 2 g COD/L/day to 16 g COD/L/day. There was little difference in performance between the three TPAB systems based on COD reduction and methane production. The 1:7 ratio of thermophilic:mesophilic phase TPAB system performed as well as the 1:3 and 1:1 size ratio TPAB systems. In applications of the process, a relatively small thermophilic first-phase can be used without sacrificing overall two-phase system performance. The TPAB process is a promising new anaerobic treatment technology with the ability to achieve higher efficiencies of organic removals than is generally possible for single-stage anaerobic filter systems operated at equivalent HRTs and organic loadings.


2013 ◽  
Vol 295-298 ◽  
pp. 1372-1375 ◽  
Author(s):  
Guang Wei Liu ◽  
Run Cai Bai

The main formation condition and harmfulness of the acidic mining waste water's were analyzed in this paper. The treatment technology of the acid mine drainage's was briefly introduced. The research development of acid mine drainage was summarized in recent years. It was the fact that developing the efficient, cheap, safe and easy treatment technology of acid mine should be necessary and inevitably and some success management experiences of acidic waste water were applied in acidic mining wastewater.


Sign in / Sign up

Export Citation Format

Share Document