scholarly journals Electrochemical removal of zinc and nickel ions from wastewater using porous electrodes

2021 ◽  
Author(s):  
Qazi Sabir

Simulated wastewater containing Ni++ and Zn++ was treated using an electrochemical cell. Porous aluminum cathode and porous stainless steel anode were used in a flow-through configuration. For porous catholdes, both aluminium foam and corrugated aluminum plates having perforations were used. To study the effects of applied voltage and volumetric liquid flux on the removal of Ni++ and Zn++, the electrochemical cell was operated for 48 hours at different applied voltages of 5, 10, 15, 20 and 25 V, and at different volumetric liquid fluxes both in the laminar (0.00471 and 0.00943 m³.m-².s-¹) and turbulent regimes (0.01414, 0.01886 and 0.02357 m³.m-².s-¹). For the maximum removal of both nickel and zinc ions, the optimum applied voltage and volumetric liquid flux were found to be 12 V and 0.02357 m³.m-².s-¹, respectively; under these operating conditions, the concentrations of Ni++ and Zn++ in the simulated wastewater were reduced by 85.5% and 98%, respectively. Operating beyond an applied voltage of 12 V, the removal of Zn++ was slightly improved and achieved a maximum value of 99.05% at 25 V; however, an opposite trend was observed in case of Ni++ removal, which finally decreased to 56% at 25 V., because of the excessive precipitation of Ni++ as nickel hydoroxide.

2021 ◽  
Author(s):  
Qazi Sabir

Simulated wastewater containing Ni++ and Zn++ was treated using an electrochemical cell. Porous aluminum cathode and porous stainless steel anode were used in a flow-through configuration. For porous catholdes, both aluminium foam and corrugated aluminum plates having perforations were used. To study the effects of applied voltage and volumetric liquid flux on the removal of Ni++ and Zn++, the electrochemical cell was operated for 48 hours at different applied voltages of 5, 10, 15, 20 and 25 V, and at different volumetric liquid fluxes both in the laminar (0.00471 and 0.00943 m³.m-².s-¹) and turbulent regimes (0.01414, 0.01886 and 0.02357 m³.m-².s-¹). For the maximum removal of both nickel and zinc ions, the optimum applied voltage and volumetric liquid flux were found to be 12 V and 0.02357 m³.m-².s-¹, respectively; under these operating conditions, the concentrations of Ni++ and Zn++ in the simulated wastewater were reduced by 85.5% and 98%, respectively. Operating beyond an applied voltage of 12 V, the removal of Zn++ was slightly improved and achieved a maximum value of 99.05% at 25 V; however, an opposite trend was observed in case of Ni++ removal, which finally decreased to 56% at 25 V., because of the excessive precipitation of Ni++ as nickel hydoroxide.


2021 ◽  
Author(s):  
Robert Mitzakov

Zinc, nickel and propylene glycol methyl ether were simultaneously removed from simulated wastewater in a column containing a counter-current packed bed and an electrochemical cell. Rectangular porous aluminum foam cathode and porous stainless steel anode were used in a plate-in-tank configuration. During combined biological and electrochemical treatment the wastewater flux was 0.00183 and 0.00915 m³.m̈².s̈¹ at a constant volumetric air flux of 0.0518 m³.m̈².s̈¹. Over a 72 hour treatment period the BOD5 was reduced by 32% and 55% for each volumetric liquid flux, respectively; zinc was reduced by 98% for both fluxes, and nickel was reduced by 95% and 82%, respectively. For sole electrochemical treatment of 48 hours, laminar and turbulent flow conditions were studied. Operating in the laminar flow region of 0.00183 and 0.00915 m³.m̈².s̈¹; zinc was reduced by 95% for both fluxes; nickel was reduced by 80% and 60%, respectively. For the turbulent region in the electrochemical cell, the volumetric liquid fluxes were 0.0137, 0.0229, 0.0321 and 0.0366 m³.m̈².s̈¹. Per cent reduction of both zinc and nickel in this region was less than that encountered in laminar flow. For all the fluxes in the turbulent region zinc was reduced by 82%; nickel was reduced by 55% at a flux of 0.0137 m³.m̈².s̈¹ and 60% at a flux of 0.0366 m³.m̈².s̈¹. Increasing electrode surface area as a means of improving heavy metal reduction by using rectangular porous material in a plate-in-tank configuration is not a viable option at higher volumetric liquid fluxes.


2021 ◽  
Author(s):  
Robert Mitzakov

Zinc, nickel and propylene glycol methyl ether were simultaneously removed from simulated wastewater in a column containing a counter-current packed bed and an electrochemical cell. Rectangular porous aluminum foam cathode and porous stainless steel anode were used in a plate-in-tank configuration. During combined biological and electrochemical treatment the wastewater flux was 0.00183 and 0.00915 m³.m̈².s̈¹ at a constant volumetric air flux of 0.0518 m³.m̈².s̈¹. Over a 72 hour treatment period the BOD5 was reduced by 32% and 55% for each volumetric liquid flux, respectively; zinc was reduced by 98% for both fluxes, and nickel was reduced by 95% and 82%, respectively. For sole electrochemical treatment of 48 hours, laminar and turbulent flow conditions were studied. Operating in the laminar flow region of 0.00183 and 0.00915 m³.m̈².s̈¹; zinc was reduced by 95% for both fluxes; nickel was reduced by 80% and 60%, respectively. For the turbulent region in the electrochemical cell, the volumetric liquid fluxes were 0.0137, 0.0229, 0.0321 and 0.0366 m³.m̈².s̈¹. Per cent reduction of both zinc and nickel in this region was less than that encountered in laminar flow. For all the fluxes in the turbulent region zinc was reduced by 82%; nickel was reduced by 55% at a flux of 0.0137 m³.m̈².s̈¹ and 60% at a flux of 0.0366 m³.m̈².s̈¹. Increasing electrode surface area as a means of improving heavy metal reduction by using rectangular porous material in a plate-in-tank configuration is not a viable option at higher volumetric liquid fluxes.


2020 ◽  
Vol 26 (3) ◽  
pp. 126-130
Author(s):  
Krasimir Kalev

AbstractA schematic diagram of a hydraulic drive system is provided to stabilize the speed of the working body by compensating for volumetric losses in the hydraulic motor. The diagram shows the inclusion of an originally developed self-adjusting choke whose flow rate in the inlet pressure change range tends to reverse - with increasing pressure the flow through it decreases. Dependent on the hydraulic characteristics of the hydraulic motor and the specific operating conditions.


2020 ◽  
Vol 22 (43) ◽  
pp. 25184-25194
Author(s):  
Kenji Kiyohara ◽  
Yuji Yamamoto ◽  
Yusuke Kawai

Selective adsorption of hydrated ions in porous electrodes is controlled by the pore size and the applied voltage.


2008 ◽  
Vol 130 (12) ◽  
pp. 4000-4006 ◽  
Author(s):  
Erik Kjeang ◽  
Raphaelle Michel ◽  
David A. Harrington ◽  
Ned Djilali ◽  
David Sinton

2016 ◽  
Vol 206 ◽  
pp. 36-44 ◽  
Author(s):  
Marc-Antoni Goulet ◽  
Aronne Habisch ◽  
Erik Kjeang

Author(s):  
Juan Yin ◽  
Yi-wu Weng

This paper investigated performance characteristics analysis of catalytic combustion by utilizing 1-D models incorporated heat and mass transfer correlations. The 1-D numerical results were compared with 2-D models studies and experimental data. The performance characteristics were mainly the effects of operating conditions on methane conversion rate. The comparable analysis confirmed that 1-D model can success in predicting performance of catalytic combustion when empiric inter-phase heat and mass transfer correlations are used and appropriate operating conditions are chosen.


2017 ◽  
Vol 206 ◽  
pp. 413-424 ◽  
Author(s):  
Li Li ◽  
Wenguang Fan ◽  
Jin Xuan ◽  
Michael K.H. Leung ◽  
Keqing Zheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document