scholarly journals Earthworm Populations In Agricultural Green Roofs And Their Influence On Soil Nitrogen, Greater Toronto Area

Author(s):  
Caitlin Victoria Santos

Earthworm consumption and egestion of organic materials can increase bioavailable nitrogen in soils. Along with other benefits resulting from their burrowing activities, this process can increase soil fertility. This research investigated whether earthworms were present, and whether a relationship between earthworms and increased ammonium and nitrate levels was seen in the soils of the agricultural green roofs sampled in the greater Toronto area. Earthworms were found at several of the agricultural green roofs, but low soil moisture, low organic carbon, shallow depth, and compactness may have inhibited the establishment of earthworm populations in some soils. Results showed a statistically significant increase in levels of ammonium, but not in nitrate, with the increasing presence of earthworms. Findings indicate that some degree of increased bioavailable nitrogen benefits, resulting from earthworm presence, that are evident in conventional agricultural soils, can also be possible in agricultural green roofs, with attention to management of soil conditions that support earthworm populations.

2021 ◽  
Author(s):  
Caitlin Victoria Santos

Earthworm consumption and egestion of organic materials can increase bioavailable nitrogen in soils. Along with other benefits resulting from their burrowing activities, this process can increase soil fertility. This research investigated whether earthworms were present, and whether a relationship between earthworms and increased ammonium and nitrate levels was seen in the soils of the agricultural green roofs sampled in the greater Toronto area. Earthworms were found at several of the agricultural green roofs, but low soil moisture, low organic carbon, shallow depth, and compactness may have inhibited the establishment of earthworm populations in some soils. Results showed a statistically significant increase in levels of ammonium, but not in nitrate, with the increasing presence of earthworms. Findings indicate that some degree of increased bioavailable nitrogen benefits, resulting from earthworm presence, that are evident in conventional agricultural soils, can also be possible in agricultural green roofs, with attention to management of soil conditions that support earthworm populations.


2013 ◽  
Vol 44 (1-4) ◽  
pp. 166-177 ◽  
Author(s):  
Leigh Sparrow ◽  
Bill Cotching ◽  
Jocelyn Parry-Jones ◽  
Garth Oliver ◽  
Eve White ◽  
...  

2017 ◽  
Vol 11 ◽  
Author(s):  
Elga Monaci ◽  
Serena Polverigiani ◽  
Davide Neri ◽  
Michele Bianchelli ◽  
Rodolfo Santilocchi ◽  
...  

Organic farming is claimed to improve soil fertility. Nonetheless, among organic practices, net C-inputs may largely vary in amount and composition and produce different soil conditions for microbial activity and plant-root system adaptation and development. In this study, we hypothesised that, in the regime of organic agriculture, soil chemical and biochemical properties can substantially differ under contrasting crop rotation systems and produce conditions of soil fertility to which the plant responds through diverse growth and production. The impact of 13 years of Alfalfa-Crop rotation (P-C) and Annual Crop rotation (A-C) was evaluated on the build up of soil organic carbon (SOC), active (light fraction organic matter, LFOM; water soluble organic carbon, WSOC) and humic fraction (fulvic acids carbon, FAC; humic acids carbon, HAC), soil biochemical properties (microbial biomass carbon, MBC; basal respiration, dBR; alkaline phosphatase AmP; arylsulfatase ArS; orto-diphenoloxidase, o-DPO) and the amount of available macro-nutrients (N, P, and S) at two different soil depths (0-10 cm and 10-30 cm) before and after cultivation of wheat. We also studied the response of root morphology, physiology and yield of the plant-root system of wheat. Results showed that the level of soil fertility and plant-root system behaviour substantially differed under the two crop rotation systems investigated here. We observed high efficiency of the P-C soil in the build up of soil organic carbon, as it was 2.9 times higher than that measured in the A-C soil. With the exception of o-DPO, P-C soil always showed a higher level of AmP and ArS activity and an initial lower amount of available P and S. The P-C soil showed higher rootability and promoted thinner roots and higher root density. In the P-C soil conditions, the photosynthesis and yield of durum wheat were also favoured. Finally, cultivation of wheat caused an overall depletion of the accrued fertility of soil, mainly evident in the P-C soil, which maintained a residual higher level of all the chemical and biochemical properties tested.


1967 ◽  
Vol 47 (4) ◽  
pp. 405-412 ◽  
Author(s):  
D. B. Wilson

Hordeum jubatum L. was grown in the greenhouse under various levels of soil moisture, soil salinity, soil fertility, and soil temperature, both alone and in association with other grasses. When grown alone it developed best under high soil moisture and high soil fertility, and low soil salinity. On wet, non-saline soils its growth was restricted by competition from Dactylis glomerata L. On wet, saline soils, where D. glomerata offered little competition, it developed freely. It developed only sparsely on dry or infertile soils. Agropyron elongatum (Host.) P. B. prevented development of H. jubatum on wet, saline soils, and Festuca arundinacea Schreb. and Phalaris arundinacea L. restricted its development to a high degree. H. jubatum growth was enhanced as soil temperatures were raised from 7 °C through 12° and 20°, to 27°.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiao Wang ◽  
Xuexin Wang ◽  
Peng Geng ◽  
Qian Yang ◽  
Kun Chen ◽  
...  

AbstractIn view of the problems of low straw decomposition rates and reduced soil fertility in southern Liaoning, China, we investigated the effects of no-tillage mode (NT), deep loosening + deep rotary tillage mode (PT), rotary tillage mode (RT) and the addition of decomposing agent (the next is called a decomposer) (NT + S, PT + S, RT + S) on the decomposition proportion of straw, respectively, by using the nylon net bag method in combination with 365-day field plot experiments. The decomposition rules of cellulose, hemicellulose and lignin as well as the dynamics of soil organic carbon (SOC), soil microbial biomass carbon (MBC) and soil dissolved organic carbon (DOC) in straw returned to the field for 15, 35, 55, 75, 95, 145 and 365 days were analyzed. The results showed that in the short term, the decomposition of straw was better in both the rotray tillage and deep loosening + deep rotary modes than in the no-tillage mode, and the addition of decomposer significantly promoted the decomposition of straw and the release of carbon from straw, among them, the RT + S treatment had the highest straw decomposition proportion and carbon release proportion in all sampling periods. After a one year experimental cycle, the RT + S treatment showed the highest proportion of cellulose, hemicellulose and lignin decomposition with 35.49%, 84.23% and 85.50%, respectively, and soil SOC, MBC and DOC contents were also higher than the other treatments with an increase of 2.30 g kg−1, 14.22 mg kg−1 and 25.10 mg kg−1, respectively, compared to the pre-experimental soil. Our results show that in the short term, to accelerate the decomposition rate of returned straw and increase the content of various forms of carbon in soil, rotary tillage can be used to return the straw to the field, while also spraying straw decomposer on its surface. This experiment used a new straw decomposer rich in a variety of microorganisms, combined with the comparison of a variety of straw return modes, and in-depth study of straw decomposition effects of cellulose, hemicellulose and lignin. Thus, a scheme that can effectively improve the decomposition rate of straw and the content of various forms of organic carbon in soil within a short period of time was explored to provide theoretical support for the southern Liaoning.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
A. Marais ◽  
M. Hardy ◽  
M. Booyse ◽  
A. Botha

Different plants are known to have different soil microbial communities associated with them. Agricultural management practices such as fertiliser and pesticide addition, crop rotation, and grazing animals can lead to different microbial communities in the associated agricultural soils. Soil dilution plates, most-probable-number (MPN), community level physiological profiling (CLPP), and buried slide technique as well as some measured soil physicochemical parameters were used to determine changes during the growing season in the ecosystem profile in wheat fields subjected to wheat monoculture or wheat in annual rotation with medic/clover pasture. Statistical analyses showed that soil moisture had an over-riding effect on seasonal fluctuations in soil physicochemical and microbial populations. While within season soil microbial activity could be differentiated between wheat fields under rotational and monoculture management, these differences were not significant.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 708
Author(s):  
Phanthasin Khanthavong ◽  
Shin Yabuta ◽  
Hidetoshi Asai ◽  
Md. Amzad Hossain ◽  
Isao Akagi ◽  
...  

Flooding and drought are major causes of reductions in crop productivity. Root distribution indicates crop adaptation to water stress. Therefore, we aimed to identify crop roots response based on root distribution under various soil conditions. The root distribution of four crops—maize, millet, sorghum, and rice—was evaluated under continuous soil waterlogging (CSW), moderate soil moisture (MSM), and gradual soil drying (GSD) conditions. Roots extended largely to the shallow soil layer in CSW and grew longer to the deeper soil layer in GSD in maize and sorghum. GSD tended to promote the root and shoot biomass across soil moisture status regardless of the crop species. The change of specific root density in rice and millet was small compared with maize and sorghum between different soil moisture statuses. Crop response in shoot and root biomass to various soil moisture status was highest in maize and lowest in rice among the tested crops as per the regression coefficient. Thus, we describe different root distributions associated with crop plasticity, which signify root spread changes, depending on soil water conditions in different crop genotypes as well as root distributions that vary depending on crop adaptation from anaerobic to aerobic conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuhua Shan ◽  
Min Lv ◽  
Wengang Zuo ◽  
Zehui Tang ◽  
Cheng Ding ◽  
...  

AbstractThe most important measures for salt-affected mudflat soil reclamation are to reduce salinity and to increase soil organic carbon (OC) content and thus soil fertility. Salinity reduction is often accomplished through costly freshwater irrigation by special engineering measures. Whether fertility enhancement only through one-off application of a great amount of OC can improve soil properties and promote plant growth in salt-affected mudflat soil remains unclear. Therefore, the objective of our indoor pot experiment was to study the effects of OC amendment at 0, 0.5%, 1.0%, 1.5%, and 2.5%, calculated from carbon content, by one-off application of sewage sludge on soil properties, rice yield, and root growth in salt-affected mudflat soil under waterlogged conditions. The results showed that the application of sewage sludge promoted soil fertility by reducing soil pH and increasing content of OC, nitrogen and phosphorus in salt-affected mudflat soil, while soil electric conductivity (EC) increased with increasing sewage sludge (SS) application rates under waterlogged conditions. In this study, the rice growth was not inhibited by the highest EC of 4.43 dS m−1 even at high doses of SS application. The SS application increased yield of rice, promoted root growth, enhanced root activity and root flux activity, and increased the soluble sugar and amino acid content in the bleeding sap of rice plants at the tillering, jointing, and maturity stages. In conclusion, fertility enhancement through organic carbon amendment can “offset” the adverse effects of increased salinity and promote plant growth in salt-affected mudflat soil under waterlogged conditions.


Sign in / Sign up

Export Citation Format

Share Document