scholarly journals Real-time data mining for multimedia streaming

2021 ◽  
Author(s):  
Sepideh Banihashemi

Developing a Web Video Player connected to a security surveillance camera for collecting the video streams is the main objective of this study. The Developed Web Application tracks the target object through the sequences of video frames and generates the object trajectories. The video frames are analyzed, and the object trajectories are fed into a classifier or clustering method for training and movement detection purposes. In this thesis, several machine learning techniques are applied and implemented in Batch and in Real-Time mode including SVM, J48 Decision Tree, PART, Decision Table, Decision Stump, Multilayer Perceptron, and K-Means clustering by using two customized datasets. The object tracking, and movement detection are based on a simplified HSV color space model. The developed Web Application and proposed architecture are implemented on a local area network with in-house Server as well as a single computer and can detect the trajectories of the moving objects effectively.

2021 ◽  
Author(s):  
Sepideh Banihashemi

Developing a Web Video Player connected to a security surveillance camera for collecting the video streams is the main objective of this study. The Developed Web Application tracks the target object through the sequences of video frames and generates the object trajectories. The video frames are analyzed, and the object trajectories are fed into a classifier or clustering method for training and movement detection purposes. In this thesis, several machine learning techniques are applied and implemented in Batch and in Real-Time mode including SVM, J48 Decision Tree, PART, Decision Table, Decision Stump, Multilayer Perceptron, and K-Means clustering by using two customized datasets. The object tracking, and movement detection are based on a simplified HSV color space model. The developed Web Application and proposed architecture are implemented on a local area network with in-house Server as well as a single computer and can detect the trajectories of the moving objects effectively.


2021 ◽  
Vol 9 (04) ◽  
pp. 39-46
Author(s):  
Prof. Swarnali Ghosh Dastider ◽  
Luis Rosa

Real-time collaboration of multiple digital models is vital for successful construction projects using Virtual Design and Construction (VDC) or Building Information Modeling (BIM). Real-time collaboration allows users to workshare within a multidisciplinary team to co-author multiple smart digital models for better efficiency. This can be done in two ways, either using a physical server (Local Area Network/LAN server) or cloud-based server (Wide Area Network/WAN server). Such cloud-based servers are A360, C4R, Collaboration for Revit, or BIM360Design collaborate, etc. However, above-mentioned cloud services come at a significant price, making it challenging for academia and small businesses to perform real-time collaboration using BIM/VDC models. To find an affordable alternative, an attempt was made as part of the Virtual Design and Construction (VDC) course offered by the Construction Science and Management Department (CSM). For this case study, a popular and free (Google) cloud server was tested as a WAN server to host four multidisciplinary collaborative VDC central models for five users across five different geographic locations and time zones. The study rendered successful results to establish a real-time collaborative workshare environment; hence, can significantly benefit academia and small business.


2014 ◽  
Vol 1006-1007 ◽  
pp. 723-726
Author(s):  
Shi Yu Huan

Along with the rapid expansion of automation, communication, the Internet of things technology, and video image processing technology, the wireless video transmission technology based on the embedded system is becoming increasingly more mature. In this paper, what has been designed and managed to be perfectly applied is a transmission system of high reliability and convenience which based on the technique of pan-tilt control and integrated the technology of wireless LAN, embedded technology, video transmission technology. The paper briefly introduces the research background of the system, current research status at home and abroad, the development trend and the significance of this design project. What is more is that the article goes through the hardware and software design of the pan-tilt control circuit and software of real-time video transmission in a detailed way. The biggest is that this project has made the real-time video transmission in the local area network came true and you can check the real-time dynamic video images by browsing the web through you mobile phone.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5401
Author(s):  
Mingzhi Song ◽  
Jiansheng Qian

The access points (APs) in a coal mine wireless local area network (WLAN) are generally sparsely distributed. It can, with difficulty, satisfy the basic requirements of the fingerprint positioning based on Wi-Fi. Currently, the effectiveness of positioning is ensured by deploying more APs in an underground tunnel, which significantly increases system cost. This problem can be solved by using the Virtual Access Point (VAP) method that introduces virtual access points (VAPs), which can be virtually arranged in any part of the positioning area without installing actual access points. The drawback of the VAP method is that the generated received signal strength (RSS) value of a VAP is calculated based on the mapping of RSS value from only one corresponding access point (AP). This drawback does not consider the correlation between different AP signals and the generated RSS value of a VAP, which makes the modeling of fingerprint samples and real-time RSS collection incomplete. This study proposed a Multi-Association Virtual Access Point (MA-VAP) method takes into account the influence of multi-association. The multi-association coefficient is calculated based on the correlation between the RSS values of a VAP and multiple access points (APs). Then, the RSS value generated by a VAP is calculated using the multi-association function. The real-time collected RSS values from multiple APs related to this VAP are the input of the multi-association function. The influence of the number of VAPs and their arrangement on positioning accuracy is also analyzed. The experimental positioning results show that the proposed MA-VAP method achieves better positioning performance than the VAP method for the same VAP arrangement. Combined with the Weight K-Nearest Neighbors (WKNN) algorithm and Kernel Principal Component Analysis (KPCA) algorithm, the positioning error of the MA-VAP method of the error distance cumulative distribution function (CDF) at 90% is 4.5 m (with WKNN) and 3.5 m (with KPCA) in the environment with non-line-of-sight (NLOS) interference, and the positioning accuracy is improved by 10% (with WKNN) and 22.2% (with KPCA) compared with the VAP method. The MA-VAP method not only effectively solves the fingerprint positioning problem when APs are sparse deployed, but also improves the positioning accuracy.


2013 ◽  
Vol 330 ◽  
pp. 561-564 ◽  
Author(s):  
Ming Li ◽  
Chun Ping Wang ◽  
Zhi Qiang Wang

In order to meet the real-time demands of some equipment networked test, the time synchronization techniques of ATS based traditional instrument buses are compared with the techniques of LXI ATS. Accordingly,the necessity of LXI ATS time synchronization technique study is put forward. The sorts of time synchronization techniques based on Local Area Network are analyzed. In addition, some methods which could improve the level of LXI data real-time communications are presented. Afterwards, technique realizations of PTP are studied in detail. Local Area Network techniques and IEEE 1588 Precise Time Protocol are adopted in the LXI Automatic Test System which designed in the paper, and the level of time synchronization precision in the system is improved.


2018 ◽  
Vol 2018 ◽  
pp. 1-19 ◽  
Author(s):  
Admir Kaknjo ◽  
Muzaffar Rao ◽  
Edin Omerdic ◽  
Luke Robinson ◽  
Daniel Toal ◽  
...  

This work presents a detailed study, characterization, and measurement of video latency in a real-time video streaming application. The target application consists of an automatic control system in the form of a control station and the mini Remotely Operated Vehicle (ROV) equipped with a camera, which is controllable over local area network (LAN) and the Internet. Control signal transmission and feedback measurements to the operator usually impose real-time constraints on the network channel. Similarly, the video stream, which is required for the normal system control and maneuvering, imposes further strict requirements on the network in terms of bandwidth and latency. Based on these requirements, controlling the system in real time through a standard Internet connection is a challenging task. The measurement of important network parameters like availability, bandwidth, and latency has become mandatory for remotely controlling the system in real time. It is necessary to establish a methodology for the measurement of video and network latency to improve the real-time controllability and safety of the system as such measurement is not possible using existing solutions due to the following reasons: insufficient accuracy, relying on the Internet resources such as generic Network Time Protocol (NTP) servers, inability to obtain one-way delay measurement, and many solutions only having support for web cameras. Here, an efficient, reliable, and cost-effective methodology for the measurement of latency of a video stream over a LAN and the Internet is proposed. A dedicated stratum-1 NTP server is used and the necessary software needed for acquiring and measuring the latency of a video stream from a generic IP camera as well as integration into the existing ROV control software was developed. Here, by using the software and dedicated clock synchronization equipment (NTP server), it was found that normal video latencies in a LAN were in the range of 488ms – 850ms, while latencies over the Internet were measured to be in the range of 558ms – 1211ms. It is important to note that the values were obtained by using a generic (off-the-shelf) IP camera and they represent the actual latencies which might be experienced during control over long range and across international territory borders.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5504
Author(s):  
Hyang-A Park ◽  
Gilsung Byeon ◽  
Wanbin Son ◽  
Hyung-Chul Jo ◽  
Jongyul Kim ◽  
...  

Due to the recent development of information and communication technology (ICT), various studies using real-time data are now being conducted. The microgrid research field is also evolving to enable intelligent operation of energy management through digitalization. Problems occur when operating the actual microgrid, causing issues such as difficulty in decision making and system abnormalities. Using digital twin technology, which is one of the technologies representing the fourth industrial revolution, it is possible to overcome these problems by changing the microgrid configuration and operating algorithms of virtual space in various ways and testing them in real time. In this study, we proposed an energy storage system (ESS) operation scheduling model to be applied to virtual space when constructing a microgrid using digital twin technology. An ESS optimal charging/discharging scheduling was established to minimize electricity bills and was implemented using supervised learning techniques such as the decision tree, NARX, and MARS models instead of existing optimization techniques. NARX and decision trees are machine learning techniques. MARS is a nonparametric regression model, and its application has been increasing. Its performance was analyzed by deriving performance evaluation indicators for each model. Using the proposed model, it was found in a case study that the amount of electricity bill savings when operating the ESS is greater than that incurred in the actual ESS operation. The suitability of the model was evaluated by a comparative analysis with the optimization-based ESS charging/discharging scheduling pattern.


Author(s):  
Pradhumna Lal Shrestha ◽  
Michael Hempel ◽  
Sushanta Rakshit ◽  
Hamid Sharif ◽  
John Punwani ◽  
...  

Traditional Wireless Sensor Network (WSN) solutions have been deemed insufficient to address the requirements of freight railroad companies to implement real-time monitoring and control of their trains, tracks and wayside equipment. With only ZigBee-based elements, the transmission capabilities of WSN devices are limited in terms of coverage range and throughput. This leads to severe delay and congestion in the network, particularly in railroad scenarios that usually require the nodes to be arranged in linear chain-like topology. In such a multi-hop topology to communicate from one end of a train to the locomotive — and due to ZigBee’s limited communication range — data needs to be transmitted using a very high number of hops and thus generates long delays and congestion problems. To overcome this drawback, we have proposed a heterogeneous multi-hop networking approach called “Hybrid Technology Networking” (HTN). In HTN we combined Wireless Local Area Network (WLAN) technologies like WiFi, which provide improved communication range and higher data rates, with low-power communication technologies like ZigBee. This significantly reduces the number of hops required to deliver data across the network and hence solves the issues of delay and congestion, while also achieving superior enery efficiency and network lifetime. The sensor nodes are logically divided into clusters and each cluster has a WiFi “gateway”. All intra-cluster communication is achieved via IEEE 802.15.4 and ZigBee protocols, while all inter-cluster communication utilizes WiFi protocol standards. To implement our proposed technology in railroad networks, we are designing hardware prototypes and simulation models to evaluate the functionality and performance of our HTN solution, which is designed around a dual network stack design governed by the HTN protocol. This ensures full compliance with IEEE and industry communication protocols for interoperability. Since no simulation tools that seamlessly combine both WSN and WLAN technologies in a single module exist, we wrote our own simulation environment using OPNET. In this paper, we have provided information of implementing the HTN protocol in OPNET and the simulation results for different scenarios relevant to railroad operations. These results will demonstrate the efficacy of our proposed system as well as provide the baseline data for testing the hardware devices in live networks. Under simulated traffic and channel conditions and device configurations, we observed a decrease of 77.27% in end-to-end delay and an increase of 69.70% in received data volume when using HTN compared to ZigBee-only multi-hop networks, simulated over 14 railcars in railroad-relevant scenarios.


1991 ◽  
Vol 3 (2) ◽  
pp. 115-147 ◽  
Author(s):  
K. Arvind ◽  
Krithi Ramamritham ◽  
John A. Stankovic

Sign in / Sign up

Export Citation Format

Share Document