scholarly journals Assessing toxicity of titanium dioxide (TiO2) nanoparticles on Pseudomonas species biofilms

2021 ◽  
Author(s):  
Yevheniya Chabanyuk

Biofilms are essential to the aquatic environment. Recent advances in technology resulted in increased use of nanomaterials (such as titanium dioxide nanoparticles) and their release into aquatic environments with unknown long-term effects. Potential toxicity of titanium dioxide, known for its photocatalytic properties, on Pseudomonas aeruginosa (PAO1-gfp) and Pseudomonas sp. (CT07-gfp) biofilm formation and proliferation was assessed using flowcells, confocal laser scanning microscopy (CLSM), and total and viable cell release into effluent under different titanium dioxide concentrations (100 ppm, 10 ppm and 1 ppm). COMSTAT software analysis was used to obtain quantitative morphological biofilm data. Results showed that titanium dioxide had a concentration and media-dependent effect on biofilm formation, growth, proliferation and viability. Viable effluent cell counts remained within the same order of magnitude. Biofilm recovery was evident within 24-48 hours after exposure. At environmentally relevant concentration (1 ppm), there was no effect on formation, proliferation or growth of the biofilm.

2021 ◽  
Author(s):  
Yevheniya Chabanyuk

Biofilms are essential to the aquatic environment. Recent advances in technology resulted in increased use of nanomaterials (such as titanium dioxide nanoparticles) and their release into aquatic environments with unknown long-term effects. Potential toxicity of titanium dioxide, known for its photocatalytic properties, on Pseudomonas aeruginosa (PAO1-gfp) and Pseudomonas sp. (CT07-gfp) biofilm formation and proliferation was assessed using flowcells, confocal laser scanning microscopy (CLSM), and total and viable cell release into effluent under different titanium dioxide concentrations (100 ppm, 10 ppm and 1 ppm). COMSTAT software analysis was used to obtain quantitative morphological biofilm data. Results showed that titanium dioxide had a concentration and media-dependent effect on biofilm formation, growth, proliferation and viability. Viable effluent cell counts remained within the same order of magnitude. Biofilm recovery was evident within 24-48 hours after exposure. At environmentally relevant concentration (1 ppm), there was no effect on formation, proliferation or growth of the biofilm.


Viruses ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 438 ◽  
Author(s):  
Nanna Olsen ◽  
Elowine Thiran ◽  
Tobias Hasler ◽  
Thomas Vanzieleghem ◽  
Georgios Belibasakis ◽  
...  

Staphylococcus aureus is an important pathogen and biofilm former. Biofilms cause problems in clinics and food production and are highly recalcitrant to antibiotics and sanitizers. Bacteriophage endolysins kill bacteria by degrading their cell wall and are therefore deemed promising antimicrobials and anti-biofilm agents. Depolymerases targeting polysaccharides in the extracellular matrix have been suggested as parts of a multi-enzyme approach to eradicate biofilms. The efficacy of endolysins and depolymerases against S. aureus biofilms in static models has been demonstrated. However, there is a lack of studies evaluating their activity against biofilms grown under more realistic conditions. Here, we investigated the efficacy of the endolysin LysK and the poly-N-acetylglucosamine depolymerase DA7 against staphylococcal biofilms in static and dynamic (flow cell-based) models. LysK showed activity against multiple S. aureus strains, and both LysK and DA7 removed static and dynamic biofilms from polystyrene and glass surfaces at low micromolar and nanomolar concentrations, respectively. When combined, the enzymes acted synergistically, as demonstrated by crystal violet staining of static biofilms, significantly reducing viable cell counts compared to individual enzyme treatment in the dynamic model, and confocal laser scanning microscopy. Overall, our results suggest that LysK and DA7 are potent anti-biofilm agents, alone and in combination.


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1218 ◽  
Author(s):  
Shinechimeg Dima ◽  
Yin-Yin Lee ◽  
Ikki Watanabe ◽  
Wei-Jen Chang ◽  
Yu-Hua Pan ◽  
...  

Antimicrobials are important adjuncts in the treatment of caries and periodontitis. However, increased bacterial resistance and hypersensitivity reactions to commonly used antimicrobials have led to an increasing demand for safe and natural substances. The objective of this study was to investigate the antibacterial effects of ε-polylysine against oral pathogens Streptococcus mutans and Porphyromonas gingivalis. Broth dilution assay, scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) analyses were performed to explore the antibacterial effect of ε-polylysine against S. mutans strain ATCC25175 and P. gingivalis strain ATCC332277. For the test solution, ε-polylysine was added to the bacterial suspension to prepare 0.125%, 0.25%, 0.5% and 1% ε-polylysine solutions diluted in broth medium. All four concentrations demonstrated complete inhibition of S. mutans and significantly reduced viable cell counts of P. gingivalis after 24 h. From starting inoculum of 9.15 log CFU/mL, P. gingivalis cell counts reduced to 4.01 log CFU/mL in the 0.125% ε-polylysine treatment group. SEM, CLSM, and the LIVE/DEAD bacterial assay of ε-polylysine application on P. gingivalis biofilm-dentin specimens revealed bacterial cell membrane disruption and irregular cell morphologies. The results indicated satisfactory antibacterial efficacy of ε-polylysine against P. gingivalis and S. mutans in liquid medium and as an application on biofilm-dentin specimens.


2021 ◽  
Author(s):  
Shayesteh Beladi-Behbahani ◽  
Sarah M. Helms ◽  
John D. DesJardins ◽  
Marian S. Kennedy ◽  
Terri Bruce ◽  
...  

Abstract In order to assess and compare the antibacterial property of implants surfaces, a standard method is needed to quantify bacterial load. This study evaluated the effectiveness of three quantifying methods, namely, (I) crystal violet staining analysis, (II) ultrasound detachment with viable cell counts, and (III) confocal laser scanning microscopy for characterizing S. aureus Seattle 1945 (ATCC 25923) biofilm on metallic coupons. The accuracy of the results, time for completion, and ease of use of methods were compared. The crystal violet method is relatively faster and more straightforward for analyzing biofilm formation. However, the accuracy of the confocal laser scanning microscopy method is found to be considerably higher than that of the other methods. Confocal laser scanning microscopy method is considered to be more time-consuming for data collection and analysis and costlier. The ultrasound detachment followed by viable cell count of recovered cells is recommended for biofilm quantification analysis on orthopedic materials when there is a large number of samples (more than ten samples). This info could provide guidelines that would facilitate the selection of suitable method for quantifying biofilm formation on orthopedic implants based on investigators’ consideration on method accessibility, assay cost, assay time, and complexity of method.


2016 ◽  
Vol 6 (01) ◽  
pp. 5218
Author(s):  
Laxmi Mohandas ◽  
Anju T. R. ◽  
Sarita G. Bhat*

An assortment of redox-active phenazine compounds like pyocyanin with their characteristic blue-green colour are synthesized by Pseudomonas aeruginosa, Gram-negative opportunistic pathogens, which are also considered one of the most commercially valuable microorganisms. In this study, pyocyanin from Pseudomonas aeruginosa BTRY1 from food sample was assessed for its antibiofilm activity by micro titer plate assay against strong biofilm producers belonging to the genera Bacillus, Staphylococcus, Brevibacterium and Micrococcus. Pyocyanin inhibited biofilm activity in very minute concentrations. This was also confirmed by Scanning Electron Microscopy (SEM) and Confocal Laser Scanning Microscopy (CLSM). Both SEM and CLSM helped to visualize the biocontrol of biofilm formation by eight pathogens. The imaging and quantification by CLSM also established the impact of pyocyanin on biofilm-biocontrol mainly in the food industry.


2010 ◽  
Vol 59 (10) ◽  
pp. 1225-1234 ◽  
Author(s):  
H. M. H. N. Bandara ◽  
O. L. T. Lam ◽  
R. M. Watt ◽  
L. J. Jin ◽  
L. P. Samaranayake

The objective of this study was to evaluate the effect of the bacterial endotoxin LPS on Candida biofilm formation in vitro. The effect of the LPS of Pseudomonas aeruginosa, Klebsiella pneumoniae, Serratia marcescens and Salmonella typhimurium on six different species of Candida, comprising Candida albicans ATCC 90028, Candida glabrata ATCC 90030, Candida krusei ATCC 6258, Candida tropicalis ATCC 13803, Candida parapsilosis ATCC 22019 and Candida dubliniensis MYA 646, was studied using a standard biofilm assay. The metabolic activity of in vitro Candida biofilms treated with LPS at 90 min, 24 h and 48 h was quantified by XTT reduction assay. Viable biofilm-forming cells were qualitatively analysed using confocal laser scanning microscopy (CLSM), while scanning electron microscopy (SEM) was employed to visualize the biofilm structure. Initially, adhesion of C. albicans was significantly stimulated by Pseudomonas and Klebsiella LPS. A significant inhibition of Candida adhesion was noted for the following combinations: C. glabrata with Pseudomonas LPS, C. tropicalis with Serratia LPS, and C. glabrata, C. parapsilosis or C. dubliniensis with Salmonella LPS (P<0.05). After 24 h of incubation, a significant stimulation of initial colonization was noted for the following combinations: C. albicans/C. glabrata with Klebsiella LPS, C. glabrata/C. tropicalis/C. krusei with Salmonella LPS. In contrast, a significant inhibition of biofilm formation was observed in C. glabrata/C. dubliniensis/C. krusei with Pseudomonas LPS, C. krusei with Serratia LPS, C. dubliniensis with Klebsiella LPS and C. parapsilosis/C. dubliniensis /C. krusei with Salmonella LPS (P<0.05). On further incubation for 48 h, a significant enhancement of biofilm maturation was noted for the following combinations: C. glabrata/C. tropicalis with Serratia LPS, C. dubliniensis with Klebsiella LPS and C. glabrata with Salmonella LPS, and a significant retardation was noted for C. parapsilosis/C. dubliniensis/C. krusei with Pseudomonas LPS, C. tropicalis with Serratia LPS, C. glabrata/C. parapsilosis/C. dubliniensis with Klebsiella LPS and C. dubliniensis with Salmonella LPS (P<0.05). These findings were confirmed by SEM and CLSM analyses. In general, the inhibition of the biofilm development of LPS-treated Candida spp. was accompanied by a scanty architecture with a reduced numbers of cells compared with the profuse and densely colonized control biofilms. These data are indicative that bacterial LPSs modulate in vitro Candida biofilm formation in a species-specific and time-dependent manner. The clinical and the biological relevance of these findings have yet to be explored.


2017 ◽  
Vol 63 (7) ◽  
pp. 608-620 ◽  
Author(s):  
Siyuan Chang ◽  
Xiaodong Chen ◽  
Shuo Jiang ◽  
Jinchun Chen ◽  
Lin Shi

Biofilm is a biological complex caused by bacteria attachment to the substrates and their subsequent reproduction and secretion. This phenomenon reduces heat transfer efficiency and causes significant losses in treated sewage heat-recovering systems. This paper describes a physical approach to inhibit bacteria settlement and biofilm formation by Bacillus subtilis, which is the dominant species in treated sewage. Here, micro-patterned surfaces with different characteristics (stripe and cube) and dimensions (1–100 μm) were fabricated as surfaces of interest. Model sewage was prepared and a rotating coupon device was used to form the biofilms. Precision balance, scanning electron microscopy, and confocal laser scanning microscopy (CLSM) were employed to investigate the inhibitory effects and the mechanisms of the biofilm–surface interactions. The results have shown that surfaces with small pattern sizes (1 and 2 μm) all reduced biofilm formation significantly. Interestingly, the CLSM images showed that the surfaces do not play a role in “killing” the bacteria. These findings are useful for future development of new process surfaces on which bacteria settlement and biofilm formation can be inhibited or minimized.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bing Sun ◽  
Huaizhi Luo ◽  
Huan Jiang ◽  
Zhennan Wang ◽  
Aiqun Jia

Quorum sensing (QS) and biofilm formation inhibition activity of esculetin on Aeromonas hydrophila SHAe 115 were evaluated. Exposure to esculetin at 25, 50, and 100μg/ml significantly inhibited the production of protease and hemolysin, the formation of biofilms and attenuated the swarming motility of A. hydrophila SHAe 115. Biofilm forming inhibition was also observed through confocal laser scanning microscopy and scanning electron microscope. Quantitative real-time PCR analysis indicated that genes positively related to QS and biofilm formation were downregulated to varying degrees, while gene (litR) negatively related to biofilm formation was significantly upregulated. The phenotypic results were in good agreement with gene expression levels. These results indicated that esculetin would be a potential QS inhibitor for A. hydrophila.


2018 ◽  
Vol 45 (4) ◽  
pp. 1399-1409 ◽  
Author(s):  
Supeng Yin ◽  
Bei Jiang ◽  
Guangtao Huang ◽  
Yulong Zhang ◽  
Bo You ◽  
...  

Background/Aims: N-acetylcysteine (NAC) is a novel and promising agent with activity against bacterial biofilms. Human serum also inhibits biofilm formation by some bacteria. We tested whether the combination of NAC and human serum offers greater anti-biofilm activity than either agent alone. Methods: Microtiter plate assays and confocal laser scanning microscopy were used to evaluate bacterial biofilm formation in the presence of NAC and human serum. qPCR was used to examine expression of selected biofilm-associated genes. Extracellular matrix (ECM) was observed by transmission electron microscopy. The antioxidants GSH or ascorbic acid were used to replace NAC, and human transferrin, lactoferrin, or bovine serum albumin were used to replace serum proteins in biofilm formation assays. A rat central venous catheter model was developed to evaluate the effect of NAC on biofilm formation in vivo. Results: NAC and serum together increased biofilm formation by seven different bacterial strains. In Staphylococcus aureus, expression of genes for some global regulators and for genes in the ica-dependent pathway increased markedly. In Pseudomonas aeruginosa, transcription of las, the PQS quorum sensing (QS) systems, and the two-component system GacS/GacA increased significantly. ECM production by S. aureus and P. aeruginosa was also enhanced. The potentiation of biofilm formation is due mainly to interaction between NAC and transferrin. Intravenous administration of NAC increased colonization by S. aureus and P. aeruginosa on implanted catheters. Conclusions: NAC used intravenously or in the presence of blood increases bacterial biofilm formation rather than inhibits it.


Author(s):  
María Consuelo Latorre ◽  
María Jesús Pérez-Granda ◽  
Paul B Savage ◽  
Beatriz Alonso ◽  
Pablo Martín-Rabadán ◽  
...  

Abstract Background Ventilator-associated pneumonia is one of the most common nosocomial infections, caused mainly by bacterial/fungal biofilm. Therefore, it is necessary to develop preventive strategies to avoid biofilm formation based on new compounds. Objectives We performed an in vitro study to compare the efficacy of endotracheal tubes (ETTs) coated with the ceragenin CSA-131 and that of uncoated ETTs against the biofilm of clinical strains of Pseudomonas aeruginosa (PA), Escherichia coli (EC) and Staphylococcus aureus (SA). Methods We applied an in vitro bench top model using coated and uncoated ETTs that were treated with three different clinical strains of PA, EC and SA for 5 days. After exposure to biofilm, ETTs were analysed for cfu count by culture of sonicate and total number of cells by confocal laser scanning microscopy. Results The median (IQR) cfu/mL counts of PA, EC and SA in coated and uncoated ETTs were, respectively, as follows: 1.00 × 101 (0.0–3.3 × 102) versus 3.32 × 109 (6.6 × 108–3.8 × 109), P &lt; 0.001; 0.0 (0.0–5.4 × 103) versus 1.32 × 106 (2.3 × 103–5.0 × 107), P &lt; 0.001; and 8.1 × 105 (8.5 × 101–1.4 × 109) versus 2.7 × 108 (8.6 × 106–1.6 × 1011), P = 0.058. The median (IQR) total number of cells of PA, EC and SA in coated and non-coated ETTs were, respectively, as follows: 11.0 [5.5–not applicable (NA)] versus 87.9 (60.5–NA), P = 0.05; 9.1 (6.7–NA) versus 62.6 (42.0–NA), P = 0.05; and 97.7 (94.6–NA) versus 187.3 (43.9–NA), P = 0.827. Conclusions We demonstrated significantly reduced biofilm formation in coated ETTs. However, the difference for SA was not statistically significant. Future clinical studies are needed to support our findings.


Sign in / Sign up

Export Citation Format

Share Document