scholarly journals Aerodynamic optimization of building augmented wind turbines

Author(s):  
John Adam MacQuarrie

The omnipresence of wind, low production cost and much advancement within the field, wind power provides a vast and promising renewable energy resource. With the current high prices of oil and pressure to reduce carbon emissions, wind energy has achieved great interest creating high demands for innovative wind technology. Additionally, producing energy at the door step of consumers, such as at consumer dwellings in urban areas, wind power provides a means of producing efficient and reliable energy. The use of architectural structures to provide an augmentation source for the wind has been pursued by some ambitious architects but the effects of building augmentation are still uncertain. This study used computational fluid dynamic models to analyze varying building geometries and their effects on power augmentation. A porous region was used to model a wind turbine back pressure across the gap between the buildings. Results show augmentation increases power production one to two times compared to equivalent size free-standing wind turbines. Results also show that certain wind incidence angles provide the best augmentation indicating that building geometry is optimal when design takes into consideration winds regularity azimuth.

2021 ◽  
Author(s):  
John Adam MacQuarrie

The omnipresence of wind, low production cost and much advancement within the field, wind power provides a vast and promising renewable energy resource. With the current high prices of oil and pressure to reduce carbon emissions, wind energy has achieved great interest creating high demands for innovative wind technology. Additionally, producing energy at the door step of consumers, such as at consumer dwellings in urban areas, wind power provides a means of producing efficient and reliable energy. The use of architectural structures to provide an augmentation source for the wind has been pursued by some ambitious architects but the effects of building augmentation are still uncertain. This study used computational fluid dynamic models to analyze varying building geometries and their effects on power augmentation. A porous region was used to model a wind turbine back pressure across the gap between the buildings. Results show augmentation increases power production one to two times compared to equivalent size free-standing wind turbines. Results also show that certain wind incidence angles provide the best augmentation indicating that building geometry is optimal when design takes into consideration winds regularity azimuth.


Author(s):  
Kenneth W. Van Treuren

The category of small wind turbines is a rapidly growing market. The U. S., Europe (UK), and China are of particular interest and seeing the most growth. This paper examines the category of small wind starting with the variety of definitions found in the literature. Growth world-wide, with an emphasis on these major markets, is analyzed for trends and predicted development. The focus is on fixed pitch, small horizontal axis wind turbines, with a direct drive DC generator in the 1–10 kW class. To understand small wind turbines it is necessary to discuss design tools available for design. Included in this design discussion is the necessity for computational fluid dynamic models as well as experimentally testing both open rotors and wind tunnel models. In order for small wind turbines to continue to improve, better technologies are necessary. For design, wind turbines must be optimized for peak performance to include startup/cut-in speeds and other modifications. These wind turbines will rely on new and purposely designed airfoils; however, for low Reynolds number conditions actual airfoil data are needed as many of the computational tools do not accurately predict separation. Increasingly, noise is an issue, especially if these wind turbines will be sited in populated urban areas. An analysis of noise generation as well as design techniques for reducing noise is necessary for future designs. Important discussions on the technologies particular to small wind turbines should include the topics of aerodynamics and structures/materials. Future applications of small wind turbines seem bright. Small wind turbines are contributing to the concept of distributed generation and helping to reduce the carbon footprint. Urban environments are becoming more accepted for small wind turbines which lead to studies of flow fields in and around buildings. Of particular note are hybrid systems which combine wind with other energy generation systems such as solar, internal combustion engines, and diesel engines to name a few. These systems are advantageous for the homeowner, small business, cell phone towers, remote locations, and backup emergency power systems (to include lighting). Lastly, the concept of energy storage must be addressed in the context of small wind turbines, especially those turbines used in an isolated application. Permitting and government incentives are critical to the future success of these wind turbines.


2011 ◽  
Vol 347-353 ◽  
pp. 2342-2346
Author(s):  
Rong Fu ◽  
Bao Yun Wang ◽  
Wan Peng Sun

With increasing installation capacity and wind farms penetration, wind power plays more important role in power systems, and the modeling of wind farms has become an interesting research topic. In this paper, a coherency-based equivalent model has been discussed for the doubly fed induction generator (DFIG). Firstly, the dynamic models of wind turbines, DFIG and the mechanisms are briefly introduced. Some existing dynamic equivalent methods such as equivalent wind model, variable speed wind turbine model, parameter identification method and modal equivalent method to be used in wind farm aggregation are discussed. Then, considering wind power fluctuations, a new equivalent model of a wind farm equipped with doubly-fed induction generators is proposed to represent the interactions of the wind farm and grid. The method proposed is based on aggregating the coherent group wind turbines into an equivalent one. Finally, the effectiveness of the equivalent model is demonstrated by comparison with the wind farm response obtained from the detailed model. The dynamic simulations show that the present model can greatly reduce the computation time and model complexity.


Author(s):  
Olga Krivenko

The relevance of the study is associated with the need to determine scientifically based principles for the design of wind-powered high-rise buildings. The article analyzes the main climatic parameters affecting the design of wind-powered high-rise buildings. While current research focuses mainly on the technical performance and savings of wind power plants (WPPs), modeling wind energy potential based on the analysis of climatic parameters allows you to optimize design solutions taking into account the influence of the environment. For various stages of the design of the integration of wind turbines into a high-rise building, it is important to take into account the dimensions of climate systems (macro, meso and micro levels), based on the laws operating within certain territorial boundaries. The article discusses the macroclimatic indicators that determine the total energy resource of wind in the region. The influence of the parameters of the mesoclimate on the wind potential has been determined, in accordance with the characteristics of the natural and anthropogenic environment (relief, the presence of forests, proximity to water bodies, urban development). The parameters that clarify the energy potential of the wind at the microclimatic level, taking into account the location of the wind turbine in the building, have been investigated. As a result of the analysis, a diagram of the structure of preliminary modeling of the energy wind potential at various climatic levels in the design of wind turbines in high-rise buildings has been determined. 


Author(s):  
L. Battisti ◽  
L. Zanne ◽  
S. Dell’Anna ◽  
V. Dossena ◽  
B. Paradiso ◽  
...  

This paper presents the first results of a wide experimental investigation on the aerodynamics of a vertical axis wind turbine. Vertical axis wind turbines have recently received particular attention, as interesting alternative for small and micro generation applications. However, the complex fluid dynamic mechanisms occurring in these machines make the aerodynamic optimization of the rotors still an open issue and detailed experimental analyses are now highly recommended to convert improved flow field comprehensions into novel design techniques. The experiments were performed in the large-scale wind tunnel of the Politecnico di Milano (Italy), where real-scale wind turbines for micro generation can be tested in full similarity conditions. Open and closed wind tunnel configurations are considered in such a way to quantify the influence of model blockage for several operational conditions. Integral torque and thrust measurements, as well as detailed aerodynamic measurements were applied to characterize the 3D flow field downstream of the turbine. The local unsteady flow field and the streamwise turbulent component, both resolved in phase with the rotor position, were derived by hot wire measurements. The paper critically analyses the models and the correlations usually applied to correct the wind tunnel blockage effects. Results evidence that the presently available theoretical correction models does not provide accurate estimates of the blockage effect in the case of vertical axis wind turbines. The tip aerodynamic phenomena, in particular, seem to play a key role for the prediction of the turbine performance; large-scale unsteadiness is observed in that region and a simple flow model is used to explain the different flow features with respect to horizontal axis wind turbines.


Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4078 ◽  
Author(s):  
Tania García-Sánchez ◽  
Irene Muñoz-Benavente ◽  
Emilio Gómez-Lázaro ◽  
Ana Fernández-Guillamón

Wind power plants depend greatly on weather conditions, thus being considered intermittent, uncertain and non-dispatchable. Due to the massive integration of this energy resource in the recent decades, it is important that transmission and distribution system operators are able to model their electrical behaviour in terms of steady-state power flow, transient dynamic stability, and short-circuit currents. Consequently, in 2015, the International Electrotechnical Commission published Standard IEC 61400-27-1, which includes generic models for wind power generation in order to estimate the electrical characteristics of wind turbines at the connection point. This paper presents, describes and details the models for wind turbine topologies Types 1 and 2 following IEC 61400-27-1 for electrical simulation purposes, including the values for the parameters for the different subsystems. A hardware-in-the-loop combined with a real-time simulator is also used to analyse the response of such wind turbine topologies under voltage dips. The evolution of active and reactive powers is discussed, together with the wind turbine rotor and generator rotational speeds.


2015 ◽  
Vol 786 ◽  
pp. 205-209 ◽  
Author(s):  
H.S. Kadhim ◽  
G.A. Quadir ◽  
A.K. Farhan ◽  
U. Ryspek ◽  
K.A. Ismail

Wind energy has seen a rapid growth worldwide. Wind turbines are typical devices that convert the kinetic energy of wind into electricity. Researches in the past have proved that Vertical Axis Wind Turbines (VAWTs) are more suitable for urban areas than Horizontal Axis Wind Turbines (HAWTs). In the present design of the VAWT, the power prodused depends on the drag force generated by the individual blades and interactions between them in a rotating configuration. Numerical simulation for the aerodynamics of VAWT with tow different rotors (Three and Foure blades ) having movable vanes are curred out. The For numerical simulation, commercially available computational fluid dynamic (CFD) softwares GAMBIT and FLUENT are used. In this work the Shear Stress Transport (SST) k-ω turbulence model was used which is better than the other turbulence models available as suggested by some researchers. The predicted results show agreement with those reported in the literature for VAWT having different blades designs.


2019 ◽  
Vol 141 (9) ◽  
Author(s):  
Kenneth W. Van Treuren

Abstract This paper examines the category of small wind turbines. Numerous definitions are found in the literature. However, this paper's focus is on fixed pitch, small horizontal axis wind turbines, with a direct drive DC generator in the 1–10 kW class. Small wind turbine growth world-wide is analyzed for trends and predicted development. It is necessary to discuss design tools available for design, including computational fluid dynamic models and experimentally testing both open rotors and wind tunnel models. Wind turbines must be optimized for peak performance to include startup/cut-in speeds and other modifications. These wind turbines will rely on new and purposely designed airfoils; however, for low-Reynolds number conditions, computational tools do not accurately predict separation. An analysis of noise generation as well as design techniques for reducing noise is necessary for future designs. Discussions on the technologies particular to small wind turbines should include the topics of aerodynamics and structures/materials. Small wind turbines are contributing to the concept of distributed generation. Urban applications are leading to studies of flow fields in and around buildings. Interest in hybrid systems, which combine wind with other energy generation systems such as solar, internal combustion engines, and diesel engines, is growing. These systems are advantageous for the homeowner, small business, cell phone towers, remote locations, and backup emergency power systems (to include lighting). Finally, the concept of energy storage must be addressed in the context of small wind turbines, especially those turbines used in an isolated application.


Sign in / Sign up

Export Citation Format

Share Document