Numerical Simulation for the Aerodynamics of Vertical Axis Wind Turbine with Two Different Rotors Having Movable Vanes

2015 ◽  
Vol 786 ◽  
pp. 205-209 ◽  
Author(s):  
H.S. Kadhim ◽  
G.A. Quadir ◽  
A.K. Farhan ◽  
U. Ryspek ◽  
K.A. Ismail

Wind energy has seen a rapid growth worldwide. Wind turbines are typical devices that convert the kinetic energy of wind into electricity. Researches in the past have proved that Vertical Axis Wind Turbines (VAWTs) are more suitable for urban areas than Horizontal Axis Wind Turbines (HAWTs). In the present design of the VAWT, the power prodused depends on the drag force generated by the individual blades and interactions between them in a rotating configuration. Numerical simulation for the aerodynamics of VAWT with tow different rotors (Three and Foure blades ) having movable vanes are curred out. The For numerical simulation, commercially available computational fluid dynamic (CFD) softwares GAMBIT and FLUENT are used. In this work the Shear Stress Transport (SST) k-ω turbulence model was used which is better than the other turbulence models available as suggested by some researchers. The predicted results show agreement with those reported in the literature for VAWT having different blades designs.

2014 ◽  
Vol 554 ◽  
pp. 536-540
Author(s):  
Kadhim Suffer ◽  
Ryspek Usubamatov ◽  
Ghulam Abdul Quadir ◽  
Khairul Azwan Ismail

The last years have proved that Vertical Axis Wind Turbines (VAWTs) are more suitable for urban areas than Horizontal Axis Wind Turbines (HAWTs). To date, very little has been published in this area to assess good performance and lifetime of VAWTs either in open or urban areas. The main goal of this current research is to investigate numerically the aerodynamic performance of a newly designed cavity type vertical axis wind turbine having four blades. In the current new design the power generated depends on the drag force generated by the individual blades and interactions between them in a rotating configuration. For numerical investigation, commercially available computational fluid dynamic CFD software GAMBIT and FLUENT were used. In this numerical analysis the Shear Stress Transport (SST) k-ω turbulence model is used which is better than the other turbulence models available as suggested by some researchers. The computed results show good agreement with published experimental results.


2021 ◽  
pp. 0309524X2110618
Author(s):  
Syed Abdur Rahman Tahir ◽  
Muhammad Shakeel Virk

Vertical Axis Wind Turbine (VAWT) can be a promising solution for electricity production in remote ice prone territories of high north, where good wind resources are available, but icing is a challenge that can affect its optimum operation. A lot of research has been made to study the icing effects on the conventional horizontal axis wind turbines, but the literature about vertical axis wind turbines operating in icing conditions is still scarce, despite the importance of this topic. This paper presents a review study about existing knowledge of VAWT operation in icing condition. Focus has been made in better understanding of ice accretion physics along VAWT blades and methods to detect and mitigate icing effects.


2018 ◽  
Vol 42 (4) ◽  
pp. 404-415
Author(s):  
H. Abu-Thuraia ◽  
C. Aygun ◽  
M. Paraschivoiu ◽  
M.A. Allard

Advances in wind power and tidal power have matured considerably to offer clean and sustainable energy alternatives. Nevertheless, distributed small-scale energy production from wind in urban areas has been disappointing because of very low efficiencies of the turbines. A novel wind turbine design — a seven-bladed Savonius vertical-axis wind turbine (VAWT) that is horizontally oriented inside a diffuser shroud and mounted on top of a building — has been shown to overcome the drawback of low efficiency. The objective this study was to analyze the performance of this novel wind turbine design for different wind directions and for different guide vanes placed at the entrance of the diffuser shroud. The flow field over the turbine and guide vanes was analyzed using computational fluid dynamics (CFD) on a 3D grid for multiple tip-speed ratios (TSRs). Four wind directions and three guide-vane angles were analyzed. The wind-direction analysis indicates that the power coefficient decreases to about half when the wind is oriented at 45° to the main axis of the turbine. The analysis of the guide vanes indicates a maximum power coefficient of 0.33 at a vane angle of 55°.


Author(s):  
Omar Sherif Mohamed ◽  
Ahmed Ibrahim ◽  
Ahmed M. R. El Baz

Abstract The last few years have witnessed researches concerned by vertical axis wind turbine (VAWT) performance considering its advantages compared to the horizontal axis wind turbines, as it can be operated in urban areas without producing noise, ease of maintenance and simple construction, in addition to its low cost. More interest is growing in developing efficient clusters of VAWT in order to increase power generation at specific sites by using multiple turbines. In the present work, the performance of various configurations of Darrieus type VAWT clusters is examined using computational fluid dynamics (CFD) simulations. The objective of this work is to increase the overall power coefficient of the turbines cluster compared to single rotor performance. This objective shall be achieved by examining mutual interactions between rotors arranged in close proximity and examining the effect of oblique angle between rotors on overall performance of the cluster of rotors. The performance is assessed by observing the overall power coefficient of the cluster. Also, the velocity wake of the simulated three rotors turbine cases was analyzed and compared to the that of the single rotor.


Author(s):  
David Marten ◽  
Juliane Wendler ◽  
Georgios Pechlivanoglou ◽  
Christian Navid Nayeri ◽  
Christian Oliver Paschereit

A double-multiple-streamtube vertical axis wind turbine simulation and design module has been integrated within the open-source wind turbine simulator QBlade. QBlade also contains the XFOIL airfoil analysis functionalities, which makes the software a single tool that comprises all functionality needed for the design and simulation of vertical or horizontal axis wind turbines. The functionality includes two dimensional airfoil design and analysis, lift and drag polar extrapolation, rotor blade design and wind turbine performance simulation. The QBlade software also inherits a generator module, pitch and rotational speed controllers, geometry export functionality and the simulation of rotor characteristics maps. Besides that, QBlade serves as a tool to compare different blade designs and their performance and to thoroughly investigate the distribution of all relevant variables along the rotor in an included post processor. The benefits of this code will be illustrated with two different case studies. The first case deals with the effect of stall delaying vortex generators on a vertical axis wind turbine rotor. The second case outlines the impact of helical blades and blade number on the time varying loads of a vertical axis wind turbine.


Author(s):  
David MacPhee ◽  
Asfaw Beyene

Blade pitch control has been extremely important for the development of Horizontal-Axis Wind Turbines (HAWTs), allowing for greater efficiency over a wider range of operational regimes when compared to rigid-bladed designs. For Vertical-Axis Wind Turbines (VAWTs), blade pitching is inherently more difficult due to a dependence of attack angle on turbine armature location, shaft speed, and wind speed. As a result, there have been very few practical pitch control schemes put forward for VAWTs, which may be a major reason why this wind turbine type enjoys a much lower market share as compared to HAWTs. To alleviate this issue, the flexible, straight-bladed vertical-axis turbine is presented, which can passively adapt its geometry to local aerodynamic loadings and serves as a low-cost blade pitch control strategy increasing efficiency and startup capabilities. Using two-dimensional fluid-structure action simulations, this novel concept is compared to an identical rigid one and is proven to be superior in terms of power coefficient due to decreased torque minima. Moreover, due to the flexible nature of the blades, the morphing turbine achieves less severe oscillatory loadings. As a result, the morphing blade design is expected to not only increase efficiency but also system longevity without additional system costs usually associated with active pitch control schemes.


Author(s):  
K. Vafiadis ◽  
H. Fintikakis ◽  
I. Zaproudis ◽  
A. Tourlidakis

In urban areas, it is preferable to use small wind turbines which may be integrated to a building in order to supply the local grid with green energy. The main drawback of using wind turbines in urban areas is that the air flow is affected by the existence of nearby buildings, which in conjunction with the variation of wind speed, wind direction and turbulence may adversely affect wind energy extraction. Moreover, the efficiency of a wind turbine is limited by the Betz limit. One of the methods developed to increase the efficiency of small wind turbines and to overcome the Betz limit is the introduction of a converging – diverging shroud around the turbine. Several researchers have studied the effect of shrouds on Horizontal Axis Wind Turbines, but relatively little research has been carried out on shroud augmented Vertical Axis Wind Turbines. This paper presents the numerical study of a shrouded Vertical Axis Wind Turbine. A wide range of test cases, were examined in order to predict the flow characteristics around the rotor, through the shroud and through the rotor – shroud arrangement using 3D Computational Fluid Dynamics simulations. The power output of the shrouded rotor has been improved by a factor greater than 2.0. The detailed flow analysis results showed that there is a significant improvement in the performance of the wind turbine.


2021 ◽  
Author(s):  
S M Nazmuz Sakib

Pakistan is one of those countries which has large potential of energy harvest from renewable energy sources and specially from wind. With the surge of global warming, the world is moving towards cleaner and viable sources of energy. Horizontal Axis Wind Turbines (HAWT) currently dominates the most of the wind power farm markets in the world but Vertical Axis Wind Turbines (VAWT) are also capable of harvesting large amounts of energy with benefits over the HAWTS. VAWTS do not need a control system to be pointed in the direction of wind because with its blade in radial arrangement, wind from any direction is useful. In this report, a Straight-Blade VAWT is designed for low speeds and its performance parameters are also identified for which the improvement of the VAWT will be obtained. Self-starting ability of VAWT is also analyzed and stress and vibration analysis will be investigated in ANSYS Fluent.


2020 ◽  
Author(s):  
Ussama Ali ◽  
Mhd Modrek ◽  
Md Islam ◽  
Isam Janajreh

Abstract Wind energy has proved to be a promising sustainable energy source; the energy of wind has been harvested not only for decades but for centuries. It was in the late 19th century that wind energy was used to directly obtain electrical power. Horizontal axis wind turbines (HAWTs) are widely used in commercial applications but recently a lot of research is being done on vertical axis wind turbines (VAWTs) to improve their operation and efficiency. Absence of yaw mechanism, low noise emission, and low manufacturing, installation and maintenance costs are some of the prominent advantages of VAWT over HAWT. The objective of this study is to evaluate the performance of different blade airfoils and the influence of blade pitching in the operation of VAWT. Blade pitching is widely used in HAWTs and has proven to be very advantageous in terms of output power, but the effect of blade pitching on VAWT has not been widely studied and much less practically implied due to complex functional mechanism. VAWTs with fixed pitch experience continuously varying angle of attack which reduces the power generation. Airfoils tested in this study, for their performance on a VAWT rotor, are Joukowski airfoil (J-15), NACA0012 and NACA4312, furthermore, passive blade pitching was applied to analyze the effect of inoffset and out-offset blade pitching on the performance of the turbine. High fidelity Navier-Stokes computational flow models were applied for the analysis. A 2D unsteady CFD model was constructed to perform the simulations. Power and torque coefficients were evaluated over a varying range of tip speed ratios and a strong correlation of these coefficients was seen with different input parameters, such as airfoil shape, turbine solidity and tip speed ratios. Out-offset blade pitch angles showed better results than in-offset blade pitch angles.


Author(s):  
L. Battisti ◽  
L. Zanne ◽  
S. Dell’Anna ◽  
V. Dossena ◽  
B. Paradiso ◽  
...  

This paper presents the first results of a wide experimental investigation on the aerodynamics of a vertical axis wind turbine. Vertical axis wind turbines have recently received particular attention, as interesting alternative for small and micro generation applications. However, the complex fluid dynamic mechanisms occurring in these machines make the aerodynamic optimization of the rotors still an open issue and detailed experimental analyses are now highly recommended to convert improved flow field comprehensions into novel design techniques. The experiments were performed in the large-scale wind tunnel of the Politecnico di Milano (Italy), where real-scale wind turbines for micro generation can be tested in full similarity conditions. Open and closed wind tunnel configurations are considered in such a way to quantify the influence of model blockage for several operational conditions. Integral torque and thrust measurements, as well as detailed aerodynamic measurements were applied to characterize the 3D flow field downstream of the turbine. The local unsteady flow field and the streamwise turbulent component, both resolved in phase with the rotor position, were derived by hot wire measurements. The paper critically analyses the models and the correlations usually applied to correct the wind tunnel blockage effects. Results evidence that the presently available theoretical correction models does not provide accurate estimates of the blockage effect in the case of vertical axis wind turbines. The tip aerodynamic phenomena, in particular, seem to play a key role for the prediction of the turbine performance; large-scale unsteadiness is observed in that region and a simple flow model is used to explain the different flow features with respect to horizontal axis wind turbines.


Sign in / Sign up

Export Citation Format

Share Document