scholarly journals Thermal flexibility and a generalist life history promote urban tolerance in butterflies

2021 ◽  
Author(s):  
Corey Thomas Callaghan ◽  
Diana Bowler ◽  
Henrique Pereira

Urban expansion poses a serious threat to biodiversity. Given that the expected area of urban land cover is predicted to increase by 2-3 million km2 by 2050, urban environments are one of the most widespread human-dominated land-uses affecting biodiversity. Responses to urbanization differ greatly among species. Some species are unable to tolerate urban environments (i.e., urban avoiders), others are able to adapt and use areas with moderate levels of urbanization (i.e., urban adapters), and yet others are able to colonize and even thrive in urban environments (i.e., urban exploiters). Quantifying species-specific responses to urbanization remains an important goal, but our current understanding of urban tolerance is heavily biased towards traditionally well-studied taxa (e.g., mammals and birds). We integrated a continuous measure of urbanization — VIIRS night-time lights — with over 900,000 species’ observations from GBIF to derive a comprehensive analysis of species-specific (N=158 species) responses of butterflies to urbanization across Europe. The majority of butterfly species included in our analysis avoided urban areas, regardless of whether species’ urban tolerances were quantified as a mean score of urban tolerance across all occurrences (79%) or as a species’ response curve to the whole urbanization gradient (55%). We then used the species-specific responses to urbanization to assess which life history strategies promote urban tolerance in butterflies. These trait-based analyses found strong evidence that the average number of flight months, likely associated with thermal niche breath, and number of adult food types were positively associated with urban tolerance, while hostplant specialism was negatively associated with urban tolerance. Overall, our results demonstrate that specialist butterflies, both in terms of thermal and diet preferences, are most at risk from increasing urbanization, and should thus be considered in urban planning and prioritized for conservation.

2018 ◽  
Author(s):  
Nikolas J Willmott ◽  
Jessica Henneken ◽  
Caitlin J Selleck ◽  
Therésa M Jones

The prevalence of artificial light at night (ALAN) is increasing rapidly around the world. The potential physiological costs of this night lighting are often evident in life history shifts. We investigated the effects of chronic night-time exposure to ecologically relevant levels of LED lighting on the life history traits of the nocturnal Australian garden orb-web spider (Eriophora biapicata). We reared spiders under a 12-hour day and either a 12-hour natural darkness (~0 lux) or a 12-hour dim light (~20 lux) night and assessed juvenile development, growth and mortality, and adult reproductive success and survival. We found that exposure to ALAN accelerated juvenile development, resulting in spiders progressing through fewer moults, and maturing earlier and at a smaller size. There was a significant increase in daily juvenile mortality for spiders reared under 20 lux, but the earlier maturation resulted in a comparable number of 0 lux and 20 lux spiders reaching maturity. Exposure to ALAN also considerably reduced the number of eggs produced by females, largely associated with ALAN-induced reductions in body size. Despite previous observations of increased fitness for some orb-weavers in urban areas and near night lighting, it appears that exposure to artificial night lighting may lead to considerable developmental costs. Future research will need to consider the detrimental effects of ALAN combined with foraging benefits when studying nocturnal insectivores that forage around artificial lights.


Author(s):  
Nikolas J Willmott ◽  
Jessica Henneken ◽  
Caitlin J Selleck ◽  
Therésa M Jones

The prevalence of artificial light at night (ALAN) is increasing rapidly around the world. The potential physiological costs of this night lighting are often evident in life history shifts. We investigated the effects of chronic night-time exposure to ecologically relevant levels of LED lighting on the life history traits of the nocturnal Australian garden orb-web spider (Eriophora biapicata). We reared spiders under a 12-hour day and either a 12-hour natural darkness (~0 lux) or a 12-hour dim light (~20 lux) night and assessed juvenile development, growth and mortality, and adult reproductive success and survival. We found that exposure to ALAN accelerated juvenile development, resulting in spiders progressing through fewer moults, and maturing earlier and at a smaller size. There was a significant increase in daily juvenile mortality for spiders reared under 20 lux, but the earlier maturation resulted in a comparable number of 0 lux and 20 lux spiders reaching maturity. Exposure to ALAN also considerably reduced the number of eggs produced by females, largely associated with ALAN-induced reductions in body size. Despite previous observations of increased fitness for some orb-weavers in urban areas and near night lighting, it appears that exposure to artificial night lighting may lead to considerable developmental costs. Future research will need to consider the detrimental effects of ALAN combined with foraging benefits when studying nocturnal insectivores that forage around artificial lights.


Author(s):  
Anaïs Degut ◽  
Klaus Fischer ◽  
Martin Quque ◽  
François Criscuolo ◽  
Peter Michalik ◽  
...  

Within populations, phenotypic plasticity may allow adaptive phenotypic variation in response to selection generated by environmental heterogeneity. For instance, in multivoltine species, seasonal changes between and within generations may trigger morphological and physiological variation enhancing fitness under different environmental conditions. These seasonal changes may irreversibly affect adult phenotypes when experienced during development. Yet, the irreversible effects of developmental plasticity on adult morphology have rarely been linked to life-history traits even though they may affect different fitness components such as reproduction, mobility and self-maintenance. To address this issue, we raised larvae of Pieris napi butterflies under warm or cool conditions to subsequently compare adult performance in terms of reproduction performance (as assessed through fecundity), displacement capacity (as assessed through flight propensity and endurance) and self-maintenance (as assessed through the measurement of oxidative markers). As expected in ectotherms, individuals developed faster under warm conditions and were smaller than individuals developing under cool conditions. They also had more slender wings and showed a higher wing surface ratio. These morphological differences were associated with changes in the reproductive and flight performances of adults, as individuals developing under warm conditions laid fewer eggs and flew larger distances. Accordingly, the examination of their oxidative status suggested that individuals developing under warm conditions invested more strongly into self-maintenance than individuals developing under cool conditions (possibly at the expense of reproduction). Overall, our results indicate that developmental conditions have long-term consequences on several adult traits in butterflies. This plasticity likely acts on life history strategies for each generation to keep pace with seasonal variations and may facilitate acclimation processes in the context of climate change.


2019 ◽  
Author(s):  
Corey Thomas Callaghan ◽  
Yanina ◽  
John Wilshire ◽  
Federico Morelli

Generalist species — with their wide niche breadths — are often associated with urban environments, while specialist species are likely to be most at-risk of increasing urbanization processes. But studies which quantify the relationship between trait specialization (i.e., niche breadth) and urban tolerance are generally methodologically limited, with repeatable robust methods to easily quantify this relationship among different regions and time scales often lacking. Our objective was to use novel methods to quantify the relationship between trait specialization and urban tolerance over a broad spatial scale. We used ~ 2 million citizen science observations and spatially intersected these with remotely-sensed VIIRS night-time light values and a novel continuous measure of a species’ trait specialization for 256 European bird species. We found a negative relationship between avian urban tolerance and an overall specialization index. Nesting site niche breadth was especially negatively associated with higher urban tolerance scores. Our results highlight that species with a high degree of trait specialization likely have a lower capacity to persist in urban ecosystems, and hence, could be most at-risk in novel urban ecosystems. We suggest that trait specialization can be used as a proxy for the degree of risk posed by urban environments to a given species.


2014 ◽  
Vol 41 (2) ◽  
pp. 172 ◽  
Author(s):  
M. V. Vadell ◽  
I. E. Gómez Villafañe ◽  
R. Cavia

Context Life-history theory attempts to explain the way in which an organism is adapted to its environment as well as explaining the differences in life-history strategies among and within species. Aims The aim of this paper was to compare life-history traits of the Norway rat and the house mouse living in different habitats and geographic regions so as to find patterns related to environmental characteristics on the basis of published ecological studies conducted before 2011. Methods The environments where rodent populations lived were characterised according to climate type, occurrence of freezing temperatures and frost, degree of anthropisation and trapping location. Four demographic characteristics were analysed. A canonical correspondence analysis was performed to explain the effects of environmental variables on the demographic characteristics of rodents. Information was gathered from 35 articles published between 1945 and 2010. Key results Most populations of both species showed differences in abundance throughout the year, but no defined pattern was common among populations. The pregnancy rate of Norway rat was highest during spring and autumn in urban environments, during spring and winter in rural environments and during summer in sylvan habitats. House mouse populations were most frequently reported to experience high pregnancy rates during summer. Contrary to urban and rural populations, in sylvan environments the occurrence of a reproductive break was the most commonly reported pattern for both species. Litter size of Norway rat depended on the degree of anthropisation and the occurrence of freezing temperatures and frost. Litter size was greater in rural environments and in areas without freezing temperatures and frost. House mouse did not show differences in litter size resulting from any of the environmental characteristics analysed. Conclusions Both species are able to modify their reproductive strategies according to environmental characteristics, especially according to the degree of anthropisation of the environment. In sylvan areas, where animals are more exposed to seasonal changes in weather conditions, changes in reproductive investment are more evident. Implications Regarding the implications for rodent control, the best time to apply control measures could be winter in sylvan and urban environments. In rural environments, the best time for conducting control efforts is less clear, although cold seasons seem also to be the best.


Gerontology ◽  
2017 ◽  
Vol 63 (5) ◽  
pp. 432-434 ◽  
Author(s):  
Jan Vijg ◽  
Eric Le Bourg

There is a long-lasting debate about a natural limit to human life span, and it has been argued that the maximum reported age at death, which has not increased for ca 25 years, fluctuates around 115 years, even if some persons live beyond this age. We argue that the close connection of species-specific longevity with life history strategies explains why human life span is limited and cannot reach the considerably longer life spans of several other species.


2021 ◽  
Author(s):  
Thomas Merrien ◽  
Katrina Joan Davis ◽  
Pol Capdevila ◽  
Moreno Di Marco ◽  
Roberto Salguero-Gomez

The exponential growth that has characterised human societies since the industrial revolution has fundamentally modified our surroundings. Examples include rapid increases in agricultural fields, now accounting for 37% of the land surface, as well as increases in urban areas, projected to triple worldwide by 2030. As such, understanding how species have adapted to and will respond to increasing human pressures is of key importance. Resilience, the ability of an ecological system to resist, recover, and even benefit from disturbances, is a key concept in this regard. Here, using a recently develop comparative demographic framework, we examine how the inherent ability of 921 natural populations of 279 plants and 45 animal species worldwide to respond to disturbances correlates with human settlement size and human activities. We develop a spatially and phylogenetically explicit model parameterised with life history traits and metrics of demographic resilience using the open-access COMPADRE and COMADRE databases, coupled with high-resolution human impact information via the Human Footprint database. We expected: (H1) populations located nearer urban areas to have a greater ability to resist, recover, or benefit from human-related disturbances compared to pristine habitats; (H2) human effects on the responses of animal populations to disturbances to depend on the ability for long-distance mobility; and (H3): human pressures to constrain the repertoire of life history strategies of animal and plant species via their effects on underlying vital rates and life history traits. We find that: (1) urban areas host a limited diversity of strategies that achieve demographic resilience with, on average, more resistant and faster-recovery populations located near human activities than in pristine habitats; (2) species with limited mobility tend to be more strongly affected by human activities than those with long-distance mobility; and (3) human pressures correlate with a limited set of vital rates and life history traits, including the ability to shrink, and reproduce earlier. Our results provide a tangible picture of how, having drastically transformed terrestrial landscapes, humans have shaped the ways animals and plants respond to disturbances.


2021 ◽  
Author(s):  
Corey Thomas Callaghan ◽  
William Kirkham Cornwell ◽  
Ailstair G. B. Poore ◽  
Yanina ◽  
Federico Morelli

Aim: Our objective was to quantify urban tolerance for North American birds across the full annual cycle. We tested (1) whether intra-annual variability of urban tolerance differed between migrants and residents and (2) whether intra-annual variability of urban tolerance was phylogenetically conserved. We then assessed how the relationship between ecological and life history traits and urban tolerance differed both across the year and between migrants and residents.Location: North America.Taxon: Birds.Methods: We integrated a large citizen science dataset of observations for 237 bird species, remotely-sensed VIIRS night-time lights data, and trait data on each species. We estimate, for each species and each month of the year, a continuous measure of urban tolerance (i.e. the median of their distribution of observations across an urbanization gradient). We then use phylogenetic linear models to assess the relationship between this measure of urban tolerance and various life history and ecological traits.Results: There was a distinct drop in the overall urban tolerance scores corresponding with the breeding period; this pattern was more pronounced for migrants compared to residents. Migrants also had greater intra-annual variability than resident species. We also found that the strength of the relationships between ecological and life history traits and urban tolerance was highly seasonal for most traits considered, and some divergent patterns were noted between migrants and residents. Main conclusions: The urban tolerance of birds greatly changed throughout the annual cycle, with different patterns for migrants and residents. Compared to residents, migrants showed more intra-annual variability of urban tolerance with a drop in the average urban tolerance score during the breeding season. Together, our results suggest that urban tolerance is a function of both species and season, and they highlight the importance of considering the dynamic nature of birds’ use of urban ecosystems throughout the full annual cycle.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5599 ◽  
Author(s):  
Nikolas J. Willmott ◽  
Jessica Henneken ◽  
Caitlin J. Selleck ◽  
Therésa M. Jones

The prevalence of artificial light at night (ALAN) is increasing rapidly around the world. The potential physiological costs of this night lighting are often evident in life history shifts. We investigated the effects of chronic night-time exposure to ecologically relevant levels of LED lighting on the life history traits of the nocturnal Australian garden orb-web spider (Eriophora biapicata). We reared spiders under a 12-h day and either a 12-h natural darkness (∼0 lux) or a 12-h dim light (∼20 lux) night and assessed juvenile development, growth and mortality, and adult reproductive success and survival. We found that exposure to ALAN accelerated juvenile development, resulting in spiders progressing through fewer moults, and maturing earlier and at a smaller size. There was a significant increase in daily juvenile mortality for spiders reared under 20 lux, but the earlier maturation resulted in a comparable number of 0 lux and 20 lux spiders reaching maturity. Exposure to ALAN also considerably reduced the number of eggs produced by females, and this was largely associated with ALAN-induced reductions in body size. Despite previous observations of increased fitness for some orb-web spiders in urban areas and near night lighting, it appears that exposure to artificial night lighting may lead to considerable developmental costs. Future research will need to consider the detrimental effects of ALAN combined with foraging benefits when studying nocturnal insectivores that forage around artificial lights.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259395
Author(s):  
Samantha H. Yabsley ◽  
Jessica Meade ◽  
John M. Martin ◽  
Justin A. Welbergen

Urban expansion is a major threat to natural ecosystems but also creates novel opportunities that adaptable species can exploit. The grey-headed flying-fox (Pteropus poliocephalus) is a threatened, highly mobile species of bat that is increasingly found in human-dominated landscapes, leading to many management and conservation challenges. Flying-fox urbanisation is thought to be a result of diminishing natural foraging habitat or increasing urban food resources, or both. However, little is known about landscape utilisation of flying-foxes in human-modified areas, and how this may differ in natural areas. Here we examine positional data from 98 satellite-tracked P. poliocephalus for up to 5 years in urban and non-urban environments, in relation to vegetation data and published indices of foraging habitat quality. Our findings indicate that human-modified foraging landscapes sustain a large proportion of the P. poliocephalus population year-round. When individuals roosted in non-urban and minor-urban areas, they relied primarily on wet and dry sclerophyll forest, forested wetlands, and rainforest for foraging, and preferentially visited foraging habitat designated as high-quality. However, our results highlight the importance of human-modified foraging habitats throughout the species’ range, and particularly for individuals that roosted in major-urban environments. The exact plant species that exist in human-modified habitats are largely undocumented; however, where this information was available, foraging by P. poliocephalus was associated with different dominant plant species depending on whether individuals roosted in ‘urban’ or ‘non-urban’ areas. Overall, our results demonstrate clear differences in urban- and non-urban landscape utilisation by foraging P. poliocephalus. However, further research is needed to understand the exact foraging resources used, particularly in human-modified habitats, and hence what attracts flying-foxes to urban areas. Such information could be used to modify the urban foraging landscape, to assist long-term habitat management programs aimed at minimising human-wildlife conflict and maximising resource availability within and outside of urban environments.


Sign in / Sign up

Export Citation Format

Share Document