Effects of Loblolly Pine Wood and Pulp Properties on Sheet Characteristics

TAPPI Journal ◽  
2011 ◽  
Vol 10 (2) ◽  
pp. 36-42 ◽  
Author(s):  
DAVID E. WHITE ◽  
CHARLES COURCHENE ◽  
THOMAS MCDONOUGH ◽  
LAURIE SCHIMLECK ◽  
GARY PETER ◽  
...  

The effects of wood properties on the strength of bleachable and linerboard grade kraft pulps from 13-year-old loblolly pine (Pinus taeda) trees were investigated. Eighteen trees were selected based on breast height wood cores to represent specified ranges of specific gravity and lignin content. Air-dry density and stiffness (modulus of elasticity [MOE]), tracheid coarseness, radial diameter, tangential diameter, specific surface area, wall thickness, and microfibril angle (MFA) were estimated using SilviScan wood analysis technology and near infrared reflectance (NIR) spectroscopy. NIR spectra collected in 10 mm sections from the surface radial strips correlated very well with air-dry density, MFA, MOE, and tracheid wall thickness and were used to develop whole tree predictions. In addition, chemical composition, fiber properties, and handsheet strength were measured for both pulp grades. Statistical analysis indicated that wood density, wood fiber coarseness, and pulp fiber length had the greatest effects on sheet properties.

2005 ◽  
Vol 35 (1) ◽  
pp. 85-92 ◽  
Author(s):  
P D Jones ◽  
L R Schimleck ◽  
G F Peter ◽  
R F Daniels ◽  
A Clark III

Preliminary studies based on small sample sets show that near infrared (NIR) spectroscopy has the potential for rapidly estimating many important wood properties. However, if NIR is to be used operationally, then calibrations using several hundred samples from a wide variety of growing conditions need to be developed and their performance tested on samples from new populations. In this study, 120 Pinus taeda L. (loblolly pine) radial strips (cut from increment cores) representing 15 different sites from three physiographic regions in Georgia (USA) were characterized in terms of air-dry density, microfibril angle (MFA), and stiffness. NIR spectra were collected in 10-mm increments from the radial longitudinal surface of each strip and split into calibration (nine sites, 729 spectra) and prediction sets (six sites, 225 spectra). Calibrations were developed using untreated and mathematically treated (first and second derivative and multiplicative scatter correction) spectra. Strong correlations were obtained for all properties, the strongest R2 values being 0.83 (density), 0.90 (MFA), and 0.93 (stiffness). When applied to the test set, good relationships were obtained (Rp2 ranged from 0.80 to 0.90), but the accuracy of predictions varied depending on math treatment. The addition of a small number of cores from the prediction set (one core per new site) to the calibration set improved the accuracy of predictions and importantly minimized the differences obtained with the various math treatments. These results suggest that density, MFA, and stiffness can be estimated by NIR with sufficient accuracy to be used in operational settings.


2003 ◽  
Vol 33 (12) ◽  
pp. 2297-2305 ◽  
Author(s):  
L R Schimleck ◽  
C Mora ◽  
R F Daniels

The application of near infrared (NIR) spectroscopy to the green wood of radial samples (simulated increment cores) and the development of calibrations for the prediction of wood properties are described. Twenty Pinus taeda L. (loblolly pine) radial strips were characterized in terms of air-dry density, microfibril angle (MFA), and stiffness. NIR spectra were obtained in 10-mm steps from the radial longitudinal and transverse faces of each sample and used to develop calibrations for each property. NIR spectra were collected when the wood was green (moisture content ranged from approximately 100% to 154%) and dried to approximately 7% moisture content. Relationships between measured and NIR estimates for green wood were good; coefficients of determination (R2) ranged from 0.79 (MFA) to 0.85 (air-dry density). Differences between calibrations developed using the radial longitudinal and transverse faces were small. Calibrations were tested on an independent set. Predictive errors were relatively large for some green samples and relationships were moderate; R2p ranged from 0.67 (MFA) to 0.81 (stiffness). Dry wood calibrations demonstrated strong predictive relationships with R2p ranging from 0.87 (air-dry density) to 0.95 (stiffness). NIR spectroscopy has the potential to predict the air-dry density, MFA, and stiffness of 10-mm sections of green P. taeda wood samples.


IAWA Journal ◽  
2005 ◽  
Vol 26 (2) ◽  
pp. 175-187 ◽  
Author(s):  
Laurence R. Schimleck ◽  
Robert Evans ◽  
P. David Jones ◽  
Richard F. Daniels ◽  
Gary F. Peter ◽  
...  

Near infrared (NIR) spectroscopy offers a rapid method for the estimation of microfibril angle (MFA) and SilviScan-estimated wood stiffness (EL(SS)). The success of these NIR calibrations may be related to airdry density, because density varies in wood simultaneously with MFA and stiffness. The importance of density variation was investigated by developing calibrations for MFA and EL(SS) using Pinus radiata D. Don (radiata pine) and Pinus taeda L. (loblolly pine) sample sets where the density range was small and the relationships between density and MFA and density and EL(SS) were poor. Excellent calibrations for MFA and EL(SS) were obtained, particularly when sets had densities greater than 500 kg/m3, can provide strong relationships for MFA and stiffness even when density variation is limited. Examination of loading plots from the MFA and EL(SS) calibrations indicates that variation in wood components such as cellulose, lignin and possibly hemicellulose is important.


Holzforschung ◽  
2005 ◽  
Vol 59 (2) ◽  
pp. 214-218 ◽  
Author(s):  
Laurence R. Schimleck ◽  
Reinhard Stürzenbecher ◽  
Christian Mora ◽  
P. David Jones ◽  
Richard F. Daniels

Abstract When a radial strip is cut from an increment core it can potentially be cut with two orientations: parallel to longitudinal tracheids, i.e., a radial-longitudinal (RL) strip (the orientation of SilviScan samples), or at an orientation of 90° to the tracheids, i.e., a radial-transverse (RT) strip. Both strips could be used for near-infrared (NIR) analysis, but it is unknown how calibrations based on RT-face NIR spectra compare with those based on RL-face NIR spectra. A total of 20 Pinus taeda L. (loblolly pine) RL strips were characterized in terms of air-dry density, microfibril angle (MFA), stiffness and several tracheid morphological characteristics. NIR spectra were collected in 10-mm increments from the RL and RT faces of matching strips and used to develop calibrations for each property. In general, RL-face NIR spectra gave calibrations that provided stronger relationships. Differences between the two sets of calibrations were small, indicating that either face could be used for NIR analysis.


TAPPI Journal ◽  
2012 ◽  
Vol 11 (10) ◽  
pp. 41-50
Author(s):  
THOMAS J. MCDONOUGH ◽  
CHARLES E. COURCHENE ◽  
DAVID E. WHITE ◽  
LAURENCE SCHIMLECK ◽  
GARY PETER

Results are presented on the relationships among loblolly pine tree age and wood characteristics and the properties of pulp obtained when the trees were chipped and pulped. We selected 13-year-old and 22-year-old loblolly pine trees (18 of each) to represent specified ranges of specific gravity and lignin content. The trees were further characterized by chemical analysis, near infrared (NIR) spectroscopy, and SilviScan analysis of fiber dimensions and properties before being pulped by the kraft process. Handsheets formed from the resulting pulps were characterized in terms of sheet properties that are important for linerboard grades. Multiple regression analysis was then used to identify wood characteristics that most influenced sheet properties and to derive equations relating sheet properties to tree age, specific gravity, and chemical composition. We also developed calibrations so that sheet properties could be predicted from NIR spectroscopic analysis of wood. Nearly all differences in properties of pulps made from 13- and 22-year-old trees were attributable to differences in fundamental wood properties. Sheet properties could be estimated by measuring their near NIR spectra.


Holzforschung ◽  
2009 ◽  
Vol 63 (4) ◽  
Author(s):  
Laurence R. Schimleck ◽  
Charles Espey ◽  
Christian R. Mora ◽  
Robert Evans ◽  
Adam Taylor ◽  
...  

Abstract A total of 30 Caesalpinia echinata (pernambuco) sticks were ranked based on their suitability for making high quality bows and were assigned to one of the three following categories: 0=very poor to poor, 1=good to very good, and 2=excellent. From the end of each stick a sample was cut for wood property and near infrared (NIR) spectroscopic analysis. Wood properties measured included air-dry density, extractives content, microfibril angle, stiffness and wood color. NIR spectra were evaluated by principal component analysis (PCA) and on the PC scores. Poor quality samples were discriminated from those of good to very good and excellent quality; however, samples from the two higher quality groups were mixed. Based on relationships observed between PC scores and wood properties, we suggest that, of the measured properties, density and stiffness were the most important in sample discrimination based on quality. Samples ranked in the excellent category had high average density (1119 kg m-3) and stiffness (25.2 GPa) and relatively low extractives content (21.2%) compared to samples in the very poor to poor category (density= 938 kg m-3, stiffness=18.9 GPa and extractives content=24.9%).


IAWA Journal ◽  
2007 ◽  
Vol 28 (1) ◽  
pp. 1-12 ◽  
Author(s):  
L.R. Schimleck ◽  
E. Sussenbach ◽  
G. Leaf ◽  
P.D. Jones ◽  
C.L. Huang

The use of calibrated near infrared (NIR) spectroscopy for predicting the microfibril angle (MFA) of Pinus taeda L. (loblolly pine) wood samples is described. NIR spectra were collected from the tangential face of earlywood (EW) and latewood (LW) sections cut from eleven P. taeda radial strips. The MFA of these sections was measured using X-ray diffraction. Calibrations for MFA were determined using all samples combined, EW only and LW only. Relationships were good, with coefficients of determination (R2) ranging from 0.86 (EW) to 0.91 (LW). A calibration for MFA based on NIR spectra collected from sections of 8 strips was used to predict the MFA of sections from the remaining 3 strips. Prediction statistics were strong (R2p = 0.81, SEP= 5.2 degrees, RPDp = 2.23) however errors were greater than those reported previously for studies based on NIR spectra collected from the radial-longitudinal face. The results presented in this study demonstrate that it is possible to use tangential face NIR spectra to determine MFA variation for EW and LW within individual growth rings.


2005 ◽  
Vol 35 (10) ◽  
pp. 2423-2431 ◽  
Author(s):  
Robert Sykes ◽  
Bailian Li ◽  
Gary Hodge ◽  
Barry Goldfarb ◽  
John Kadla ◽  
...  

Near-infrared (NIR) spectroscopy is a rapid nondestructive technique that has been used to characterize chemical and physical properties of a wide range of materials. In this study, transmittance NIR spectra from thin wood wafers cut from increment cores were used to develop calibration models for the estimation of α-cellulose content, average fiber length, fiber coarseness, and lignin content in the laboratory. Eleven-year-old trees from two sites were sampled using 12-mm increment cores. Earlywood and latewood of ring 3 and ring 8 from these samples were analyzed in the laboratory using microanalytical methods for α-cellulose content, average fiber length, fiber coarseness, and lignin content. NIR calibrations and laboratory measurements based on one site were generally reliable, with coefficients of determination (R2) ranging from 0.54 to 0.88 for average fiber length and α-cellulose content, respectively. Predicting ring 8 properties using ring 3 calibration equations showed potential for predicting α-cellulose content and fiber coarseness, with R2 values of approximately 0.60, indicating the potential for early selection. Predicting the wood properties using the calibration equations from one site to predict another showed moderate success for α-cellulose content (R2 = 0.64) and fiber coarseness (R2 = 0.63), but predictions for fiber length were relatively poor (R2 = 0.43). Prediction of lignin content using transmittance NIR spectroscopy was not as reliable in this study, partially because of low variation in lignin content in these wood samples and large errors in measuring lignin content in the laboratory.


2013 ◽  
Vol 89 (05) ◽  
pp. 639-645 ◽  
Author(s):  
Chi-Leung So ◽  
Jennifer H. Myszewski ◽  
Thomas Elder ◽  
Leslie H. Groom

There have been several recent studies employing near infrared (NIR) spectroscopy for the rapid determination of microfibril angle (MFA). However, only a few have utilized samples cut from individual rings of increment cores, and none have been as large as this present study, sampling over 600 trees from two test sites producing over 3000 individual ring samples for MFA analysis. This has allowed the use of individual growth ring models rather than using those based on earlywood, latewood, corewood or outerwood. It was observed that for both test sites, the strongest models were from the “All”, earlywood and latewood sample sets. The individual growth ring calibration models provided poorer RPD values despite using over 200 samples in the analyses. In general, the results from the test samples largely mirrored those from the corresponding calibration samples. Corresponding test sample predictions from the opposing site were noticeably poorer than test samples from the same site. Thus, a greater variation in the number of sites would provide improved model robustness. This study has found that the models based on individual ring samples were not as strong as those obtained in other studies based on the radial-longitudinal face of wood strips, spread over several growth rings.


1998 ◽  
Vol 6 (1) ◽  
pp. 229-234 ◽  
Author(s):  
William R. Windham ◽  
W.H. Morrison

Near infrared (NIR) spectroscopy in the prediction of individual and total fatty acids of bovine M. Longissimus dorsi neck muscles has been studied. Beef neck lean was collected from meat processing establishments using advanced meat recovery systems and hand-deboning. Samples ( n = 302) were analysed to determine fatty acid (FA) composition and scanned from 400 to 2498 nm. Total saturated and unsaturated FA values ranged from 43.2 to 62.0% and 38.3 to 56.2%, respectively. Results of partial least squares (PLS) modeling shown reasonably accurate models were attained for total saturate content [standard error of performance ( SEP = 1.10%); coefficient of determination on the validation set ( r2 = 0.77)], palmitic ( SEP = 0.94%; r2 = 0.69), unsaturate ( SEP = 1.13%; r2 = 0.77), and oleic ( SEP = 0.97; r2 = 0.78). Prediction of other individual saturated and unsaturated FAs was less accurate with an r2 range of 0.10 to 0.53. However, the sum of individual predicted saturated and unsaturated FA was acceptable compared with the reference method ( SEP = 1.10 and 1.12%, respectively). This study shows that NIR can be used to predict accurately total fatty acids in M. Longissimus dorsi muscle.


Sign in / Sign up

Export Citation Format

Share Document