scholarly journals Prototype for fit investigation

2021 ◽  
Vol 11 (1) ◽  
pp. 5-15
Author(s):  
Talal Alsardia ◽  
László Lovas ◽  
Péter Ficzere

Nowadays, additive manufacturing is a powerful tool and promising technology both for manufacturing and educational purposes. This work aims to present a case study of using 3 dimensional (3D) printing technology for fit investigations. It describes the creation of a physical model (prototype) by using the Fused Deposition Modeling (FDM) method. The prototype of two plates was made to perform an inspection how the prototype fits with other components.

2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Hari P. N. Nagarajan ◽  
Hossein Mokhtarian ◽  
Hesam Jafarian ◽  
Saoussen Dimassi ◽  
Shahriar Bakrani-Balani ◽  
...  

Additive manufacturing (AM) continues to rise in popularity due to its various advantages over traditional manufacturing processes. AM interests industry, but achieving repeatable production quality remains problematic for many AM technologies. Thus, modeling different process variables in AM using machine learning can be highly beneficial in creating useful knowledge of the process. Such developed artificial neural network (ANN) models would aid designers and manufacturers to make informed decisions about their products and processes. However, it is challenging to define an appropriate ANN topology that captures the AM system behavior. Toward that goal, an approach combining dimensional analysis conceptual modeling (DACM) and classical ANNs is proposed to create a new type of knowledge-based ANN (KB-ANN). This approach integrates existing literature and expert knowledge of the AM process to define a topology for the KB-ANN model. The proposed KB-ANN is a hybrid learning network that encompasses topological zones derived from knowledge of the process and other zones where missing knowledge is modeled using classical ANNs. The usefulness of the method is demonstrated using a case study to model wall thickness, part height, and total part mass in a fused deposition modeling (FDM) process. The KB-ANN-based model for FDM has the same performance with better generalization capabilities using fewer weights trained, when compared to a classical ANN.


2020 ◽  
Vol 1 (2) ◽  
pp. 81-91
Author(s):  
Frince Marbun ◽  
Richard A.M. Napitupulu

3D printing technology has great potential in today's manufacturing world, one of its uses is in making miniatures or prototypes of a product such as a piston. One of the most famous and inexpensive 3D printing (additive manufacturing) technologies is Fused Deposition Modeling (FDM), the principle FDM works by thermoplastic extrusion through a hot nozzle at melting temperature then the product is made layer by layer. The two most commonly used materials are ABS and PLA so it is very important to know the accuracy of product dimensions. FDM 3D Printing Technology is able to make duplicate products accurately using PLA material. FDM machines work by printing parts that have been designed by computer-aided design (CAD) and then exported in the form of STL or .stl files and uploaded to the slicer program to govern the printing press according to the design. Using Anet A8 brand 3D printing tools that are available to the public, Slicing of general CAD geometry files such as autocad and solidwork is the basis for making this object. This software is very important to facilitate the design process to be printed. Some examples of software that can be downloaded and used free of charge such as Repetier-Host and Cura. by changing the parameters in the slicer software is very influential in the 3D printing manufacturing process.


2018 ◽  
Vol 6 (28) ◽  
pp. 7584-7593 ◽  
Author(s):  
Cole D. Brubaker ◽  
Talitha M. Frecker ◽  
James R. McBride ◽  
Kemar R. Reid ◽  
G. Kane Jennings ◽  
...  

3D printing of cadmium sulfur selenide quantum dot functionalized materials compatible with fused deposition modeling type processes and applications.


Author(s):  
Petr Andrienko ◽  
Vladimir Vasilevskij ◽  
Ivan Vittsivskyi

Fused Deposition Modeling is an additive manufacturing technology where a temperature-controlled head extrudes a thermoplastic material onto a build platform in a predetermined path. Standard, advanced thermoplastics and composites are used for printing. Among the areas of application for FDM printing, the main ones are rapid prototyping, as well as small-scale and batch production. The purpose of the work is the implementation of FDM 3D printing technology in the educational process of students in specialty 141 "Electroenergy, electrotechnics and electromechanics". The features of the technology of additive manufacturing of electrical apparatuses parts by the method of FDM printing have been investigated. Parts of four standard sizes were printed using ABS + and PLA plastics, namely, current transformer carcasses in the amount of 110 pieces and sensor bodies in the amount of 100 pieces. For printing, an FDM 3D printer was used built on the XZ Head Y Bed kinematic scheme with an open working chamber. The analysis of defects in finished products was carried out, which showed that the main defects are deviations of the actual dimensions and geometric shape of the finished products. Ways to prevent the occurrence of these defects are considered, namely, correcting the size of the model at the stage of preparing the model for printing, minimizing the filling density of the model, using brims in models, setting the optimal temperature of the working platform and simultaneously printing several products. The results of the study o features of the technology of additive manufacturing of electrical apparatuses parts by the method of FDM printing made it possible to develop a set of laboratory works for students of the specialty 141 "Electroenergy, electrotechnics and electromechanics".


Author(s):  
Tran Linh Khuong ◽  
Zhao Gang ◽  
Muhammad Farid ◽  
Rao Yu ◽  
Zhuang Zhi Sun ◽  
...  

Biomimetic robots borrow their structure, senses and behavior from animals, such as humans or insects, and plants. Biomimetic design is design ofa machine, a robot or a system in engineeringdomain thatmimics operational and/orbehavioral model of a biological system in nature. 3D printing technology has another name as rapid prototyping technology. Currently it is being developed fastly and widely and is applied in many fields like the jewelry, footwear, industrial design, architecture, engineering and construction, automotive, aerospace, dental and medical industry, education, geographic information system, civil engineering, guns. 3D printing technology is able to manufacture complicated, sophisticated details that the traditional processing method cannot manufacture. Therefore, 3D printing technology can be seen as an effective tool in biomimetic, which can accurately simulate most of the biological structure. Fused Deposition Modeling (FDM) is a technology of the typical rapid prototyping. The main content of the article is the focusing on tensile strength test of the ABS-Acrylonitrile Butadiene Styrene material after using Fused Deposition Modeling (FDM) technology, concretization after it’s printed by UP2! 3D printer. The article focuses on two basic features which are Tensile Strength and Determination of flexural properties.


Author(s):  
Alberto Cattenone ◽  
Simone Morganti ◽  
Gianluca Alaimo ◽  
Ferdinando Auricchio

Additive manufacturing (or three-dimensional (3D) printing) is constantly growing as an innovative process for the production of complex-shape components. Among the seven recognized 3D printing technologies, fused deposition modeling (FDM) covers a very important role, not only for producing representative 3D models, but, mainly due to the development of innovative material like Peek and Ultem, also for realizing structurally functional components. However, being FDM a production process involving high thermal gradients, non-negligible deformations and residual stresses may affect the 3D printed component. In this work we focus on meso/macroscopic simulations of the FDM process using abaqus software. After describing in detail the methodological process, we investigate the impact of several parameters and modeling choices (e.g., mesh size, material model, time-step size) on simulation outcomes and we validate the obtained results with experimental measurements.


Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 145
Author(s):  
Alexandra Zamboulis ◽  
Georgia Michailidou ◽  
Ioanna Koumentakou ◽  
Dimitrios N. Bikiaris

3D printing, or additive manufacturing, has gained considerable interest due to its versatility regarding design as well as in the large choice of materials. It is a powerful tool in the field of personalized pharmaceutical treatment, particularly crucial for pediatric and geriatric patients. Polysaccharides are abundant and inexpensive natural polymers, that are already widely used in the food industry and as excipients in pharmaceutical and cosmetic formulations. Due to their intrinsic properties, such as biocompatibility, biodegradability, non-immunogenicity, etc., polysaccharides are largely investigated as matrices for drug delivery. Although an increasing number of interesting reviews on additive manufacturing and drug delivery are being published, there is a gap concerning the printing of polysaccharides. In this article, we will review recent advances in the 3D printing of polysaccharides focused on drug delivery applications. Among the large family of polysaccharides, the present review will particularly focus on cellulose and cellulose derivatives, chitosan and sodium alginate, printed by fused deposition modeling and extrusion-based printing.


2021 ◽  
Vol 2 (2) ◽  
pp. 87-99
Author(s):  
Joy H Panjaitan ◽  
Miduk Tampubolon ◽  
Fiktor Sihombing ◽  
Jamser Simanjuntak

3D printing technology has great potential in today's manufacturing world where one of its uses is in the prototype of a product. One of the most famous and inexpensive 3D printing technologies is the Fused Deposition Modeling (FDM) method. Many studies have been carried out using this FDM method. In this study, the printing of motorbike light relay boxes was carried out using the FDM method with two variations of speed, temperature and infill of each mass. 3D Printing uses a nozzle diameter of 0.4 mm and a work table temperature of 60oC and a height of 0.2 mm for each layer with support every where. From the research results, all the products produced have a rough surface with a level of geometric accuracy ranging from 0.91% for the length dimension and 7.73% for the width dimension of the product.


Author(s):  
Nastase-Dan Ciobota ◽  
Gheorghe Ion Gheorghe ◽  
Veronica Despa

Abstract Additive Manufacturing (AM) concerns all classes of materials – polymers, metals, ceramics and glasses as well. For this reason, AM is in the focus of material scientists from all branches. Leaders of the industry realize that the possibilities of 3D printing are endless, and that these possibilities need ways and means to be taken full advantage of. Today, aerospace engineers are using the fused deposition modeling (FDM) method for rapid prototyping, part manufacturing, and tooling. They are followed by leaders and engineers from industry (industrial machines, motor vehicles, consumer products, medical/dental) but also from academic institutions and government/military.


Sign in / Sign up

Export Citation Format

Share Document