scholarly journals Predicting Bank Failures with Machine Learning Algorithms: A Comparison of Boosting and Cost-Sensitive Models

2021 ◽  
Vol 3 (2) ◽  
pp. 43-50
Author(s):  
Safa SEN ◽  
Sara Almeida de Figueiredo

Predicting bank failures has been an essential subject in literature due to the significance of the banks for the economic prosperity of a country. Acting as an intermediary player of the economy, banks channel funds between creditors and debtors. In that matter, banks are considered the backbone of the economies; hence, it is important to create early warning systems that identify insolvent banks from solvent ones. Thus, Insolvent banks can apply for assistance and avoid bankruptcy in financially turbulent times. In this paper, we will focus on two different machine learning disciplines: Boosting and Cost-Sensitive methods to predict bank failures. Boosting methods are widely used in the literature due to their better prediction capability. However, Cost-Sensitive Forest is relatively new to the literature and originally invented to solve imbalance problems in software defect detection. Our results show that comparing to the boosting methods, Cost-Sensitive Forest particularly classifies failed banks more accurately. Thus, we suggest using the Cost-Sensitive Forest when predicting bank failures with imbalanced datasets.

2021 ◽  
Vol 3 (2) ◽  
pp. 51-59
Author(s):  
Safa SEN ◽  
Sara Almeida de Figueiredo

Forecasting bank failures has been an essential study in the literature due to their significant impact on the economic prosperity of a country. Acting as an intermediary player, banks channel funds from those with surplus capital to those who require capital to carry out their economic activities. Therefore, it is essential to generate early warning systems that could warn banks and stakeholders in case of financial turbulence. In this paper, three machine learning models named as GLMBoost, XGBoost, and SMO were used to forecast bank failures. We used commercial bank failure data of Turkey between 1997 and 2001, where we have 17 failed and 20 healthy banks. Our results show that the Sequential Minimal Optimization and GLMBoost provide the same performance when classifying failed banks, while GLMBoost performs better in AUC and SMO when considering total classification success. Lastly, XGBoost, one of the most recent and robust classification models, surprisingly underperformed in all three metrics we used in research.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 3544-3546

Programming deformation gauge expect a crucial activity in keeping up extraordinary programming and diminishing the cost of programming improvement. It urges adventure executives to relegate time and advantages for desert slanted modules through early flaw distinguishing proof. Programming flaw desire is a matched portrayal issue which orchestrates modules of programming into both 2 arrangements: Defect– slanted and not-deformation slanted modules. Misclassifying blemish slanted modules as not-disfigurement slanted modules prompts a higher misclassification cost than misclassifying not-flaw slanted modules as deformation slanted ones. The AI estimation used in this paper is a mix of Cost-Sensitive Variance Score (CSVS), Cost-Sensitive Laplace Score (CSLS) and Cost-Sensitive Constraint Score (CSCS). The proposed Algorithm is surveyed and demonstrates better execution and low misclassification cost when differentiated and the 3 calculations executed autonomously.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Zhikuan Zhao ◽  
Jack K. Fitzsimons ◽  
Patrick Rebentrost ◽  
Vedran Dunjko ◽  
Joseph F. Fitzsimons

AbstractMachine learning has recently emerged as a fruitful area for finding potential quantum computational advantage. Many of the quantum-enhanced machine learning algorithms critically hinge upon the ability to efficiently produce states proportional to high-dimensional data points stored in a quantum accessible memory. Even given query access to exponentially many entries stored in a database, the construction of which is considered a one-off overhead, it has been argued that the cost of preparing such amplitude-encoded states may offset any exponential quantum advantage. Here we prove using smoothed analysis that if the data analysis algorithm is robust against small entry-wise input perturbation, state preparation can always be achieved with constant queries. This criterion is typically satisfied in realistic machine learning applications, where input data is subjective to moderate noise. Our results are equally applicable to the recent seminal progress in quantum-inspired algorithms, where specially constructed databases suffice for polylogarithmic classical algorithm in low-rank cases. The consequence of our finding is that for the purpose of practical machine learning, polylogarithmic processing time is possible under a general and flexible input model with quantum algorithms or quantum-inspired classical algorithms in the low-rank cases.


2021 ◽  
pp. 161
Author(s):  
Royyannuur Kurniawan Endrayanto ◽  
Adharul Muttaqin

Pertanian merupakan salah satu sektor penting karena dapat memenuhi kebutuhan pangan sebagai kebutuhan pokok. Kebutuhan pangan masih menjadi salah satu isu hangat terlebih di masa pandemi COVID- 19 seperti saat ini. Pemenuhan kebutuhan pangan juga berkaitan erat dengan jumlah bahan pangan yang diproduksi oleh petani. Lingkungan merupakan salah satu faktor keberhasilan dalam kegiatan pertanian. Kondisi lingkungan Indonesia yang beragam seperti suhu dan tingkat presipitasi menyebabkan adanya perbedaan jenis tanaman pangan potensial setiap daerah di Indonesia. Oleh karena itu perlu upaya untuk mengoptimalkan produksi lahan pertanian berdasarkan faktor lingkungan di setiap daerah. Upaya ini diharapkan dapat membantu menjaga ketahanan pangan baik di masa pandemi dan pasca pandemi. Pada penelitian ini diperkenalkan pemanfaatan data geospasial untuk klasifikasi jenis tanaman pangan menggunakan algoritma machine learning sebagai upaya optimalisasi lahan pertanian. Data yang digunakan adalah Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS). Algoritma machine learning yang digunakan adalah algoritma klasifikasi Random Forest. Teknologi yang digunakan adalah Google Colab, Google Earth Engine dan Python. Tujuan dari penelitian ini adalah untuk mengklasifikasikan tanaman pangan yang memiliki potensi paling baik untuk ditanam di suatu daerah berdasarkan kondisi lingkungan yang ada.


Hydrology ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 183
Author(s):  
Paul Muñoz ◽  
Johanna Orellana-Alvear ◽  
Jörg Bendix ◽  
Jan Feyen ◽  
Rolando Célleri

Worldwide, machine learning (ML) is increasingly being used for developing flood early warning systems (FEWSs). However, previous studies have not focused on establishing a methodology for determining the most efficient ML technique. We assessed FEWSs with three river states, No-alert, Pre-alert and Alert for flooding, for lead times between 1 to 12 h using the most common ML techniques, such as multi-layer perceptron (MLP), logistic regression (LR), K-nearest neighbors (KNN), naive Bayes (NB), and random forest (RF). The Tomebamba catchment in the tropical Andes of Ecuador was selected as a case study. For all lead times, MLP models achieve the highest performance followed by LR, with f1-macro (log-loss) scores of 0.82 (0.09) and 0.46 (0.20) for the 1 h and 12 h cases, respectively. The ranking was highly variable for the remaining ML techniques. According to the g-mean, LR models correctly forecast and show more stability at all states, while the MLP models perform better in the Pre-alert and Alert states. The proposed methodology for selecting the optimal ML technique for a FEWS can be extrapolated to other case studies. Future efforts are recommended to enhance the input data representation and develop communication applications to boost the awareness of society of floods.


2020 ◽  
Author(s):  
Zhengjing Ma ◽  
Gang Mei

Landslides are one of the most critical categories of natural disasters worldwide and induce severely destructive outcomes to human life and the overall economic system. To reduce its negative effects, landslides prevention has become an urgent task, which includes investigating landslide-related information and predicting potential landslides. Machine learning is a state-of-the-art analytics tool that has been widely used in landslides prevention. This paper presents a comprehensive survey of relevant research on machine learning applied in landslides prevention, mainly focusing on (1) landslides detection based on images, (2) landslides susceptibility assessment, and (3) the development of landslide warning systems. Moreover, this paper discusses the current challenges and potential opportunities in the application of machine learning algorithms for landslides prevention.


Landslides ◽  
2020 ◽  
Vol 17 (9) ◽  
pp. 2231-2246
Author(s):  
Hemalatha Thirugnanam ◽  
Maneesha Vinodini Ramesh ◽  
Venkat P. Rangan

2006 ◽  
Vol 02 (01) ◽  
pp. 0650005 ◽  
Author(s):  
M. METE DOĞANAY ◽  
NILDAĞ BAŞAK CEYLAN ◽  
RAMAZAN AKTAŞ

Banks are the most important financial institutions in Turkey because other financial institutions are not developed efficiently yet. Turkish banks experienced financial difficulties and a substantial amount of banks failed in the past. This event urged the government to initiate measures to prevent banks from getting into financial difficulties. As a result of these measures, Turkish banking system currently seems to be very attractive for the foreign investors willing to invest in this sector. One of the main concerns of the foreign investors is a possibility of a new banking crisis although it is very remote at this time. The purpose of this study is to develop early warning systems predicting the financial failure at least three years ahead of financial failure date. A number of multivariate statistical models such as multiple regression, discriminant analysis, logit, probit are used. We found that the most appropriate model is logit. The significant variables obtained from the models explain very well the causes of the bank failures. Our models can be used to assist interested parties to predict the probability of financial failure of Turkish banks.


2021 ◽  
Vol 12 (1) ◽  
pp. 297
Author(s):  
Tamás Orosz ◽  
Renátó Vági ◽  
Gergely Márk Csányi ◽  
Dániel Nagy ◽  
István Üveges ◽  
...  

Many machine learning-based document processing applications have been published in recent years. Applying these methodologies can reduce the cost of labor-intensive tasks and induce changes in the company’s structure. The artificial intelligence-based application can replace the application of trainees and free up the time of experts, which can increase innovation inside the company by letting them be involved in tasks with greater added value. However, the development cost of these methodologies can be high, and usually, it is not a straightforward task. This paper presents a survey result, where a machine learning-based legal text labeler competed with multiple people with different legal domain knowledge. The machine learning-based application used binary SVM-based classifiers to resolve the multi-label classification problem. The used methods were encapsulated and deployed as a digital twin into a production environment. The results show that machine learning algorithms can be effectively utilized for monotonous but domain knowledge- and attention-demanding tasks. The results also suggest that embracing the machine learning-based solution can increase discoverability and enrich the value of data. The test confirmed that the accuracy of a machine learning-based system matches up with the long-term accuracy of legal experts, which makes it applicable to automatize the working process.


Sign in / Sign up

Export Citation Format

Share Document