scholarly journals MULTI-RESPONSE OPTIMIZATION OF TRANSESTERIFICATION PARAMETERS OF COTTON SEED OIL USING GREY RELATIONAL ANALYSIS IN TAGUCHI METHOD FOR QUENCHING APPLICATION

2020 ◽  
Vol 4 (3) ◽  
pp. 305-312
Author(s):  
R. M. Dodo ◽  
T. Ause ◽  
E. T. Dauda ◽  
U. Shehu ◽  
I. A. Hayatudeen

The present investigation involves Taguchi Grey relational analysis-based optimization of transesterification process parameters such as methanol to oil molar ration, catalyst loading and  temperature and their effect on both per cent fatty acid methyl ester (FAME) yield and heat transfer coefficient (HTC) of transesterified cotton seed oil (TC). A Taguchi L9 orthogonal array was designed and nine experimental runs were conducted based on the designed experiments. The FAME (ester) yield and HTC were recorded for each experiment. Based on the average responses computed from Taguchi grey relational analysis, methanol to oil molar ration of 9:1 (32.6 wt% of methanol), catalyst loading of 0.5 wt% and temperature of 60 oC were identified  to be the optimal parameters. Confirmation test conducted using the optimal parameters setting demonstrated an improvement of 0.3% in grey relational grade. Methyl ester group was detected in TC on 1438.8 cm-1 by FTIR spectra. Cooling curve analysis of the TC from the confirmation experiment indicated outstanding quenching performance compared to raw cotton seed oil (FC) and SAE40.

Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1743 ◽  
Author(s):  
Prasanth Achuthamenon Sylajakumari ◽  
Ramesh Ramakrishnasamy ◽  
Gopalakrishnan Palaniappan

Co-continuous composites have potential in friction and braking applications due to their unique tribological characteristics. The present study involves Taguchi grey relational analysis-based optimization of wear parameters such as applied load, sliding speed and sliding distance, and their effect on dry sliding wear performance of AA6063/SiC co-continuous composite manufactured by gravity infiltration. A Taguchi L9 orthogonal array was designed and nine experimental runs were performed based on the designed experiments. The coefficient of wear and specific wear rate were recorded for each experiment. Based on the average responses computed from Taguchi grey relational analysis, an applied load of 60 N, sliding speed of 1 m/s and sliding distance of 1000 m were estimated to be the optimal parameters. An Analysis of Variance (ANOVA) was conducted to identify the predominant factor and established all the three factors as being significant. The sliding distance was found to have the highest significant influence of 61.05% on the wear of the C4 composite. Confirmation experiments conducted using the optimal parameters indicated an improvement of 35.25% in grey relational grade. Analysis of the worn surfaces of the confirmation experiment revealed adhesive and abrasive wear as the governing mechanisms.


2020 ◽  
Vol 7 (2) ◽  
pp. 41 ◽  
Author(s):  
Djomdi ◽  
M. T. Leku ◽  
D. Djoulde ◽  
C. Delattre ◽  
P. Michaud

This article is focused on the production of biodiesel from the waste cotton seed oil (WCSO), after purification, as an alternative to fossil fuels. Waste oil was collected from Sodecoton, a factory producing cotton seed oil in the Far North Cameroon. The WCSO was subjected to purification using activated coal, followed by transesterification under basic conditions (potassium hydroxide (KOH)), using methanol and ethanol. Some physico–chemical properties of biodiesel, such as absorbance of waste and purified oil, density, viscosity, water content, acid value, and its energy content were determined. The result of treating the WCSO with activated coal indicated that purification efficiency of activated coal increased with the contact time and the mass of the absorbent. Absorbance results directly proved that activated coal removed unwanted components. In the same way, activated coal concentration and exposure time influenced the level of free fatty acids of WCSO. The yield of methyl ester was 97%, while that of ethyl ester was 98%. The specific gravity at 25 °C was 0.945 ± 0.0601. An evaluation of the lower calorific value (PCI) was done in order to study the energy content of biodiesel. This was found to be a value of 37.02 ± 3.05 MJ/kg for methyl ester and 36.92 ± 7.20 MJ/kg for ethyl ester. WCSO constitutes feedstock for high volume, good quality, and sustainable production of biodiesel, as well as a realistic means of eliminating the pollution resulting from the indiscriminate disposal of waste oils from both household and industrial users.


2008 ◽  
Vol 63 (3-4) ◽  
pp. 297-302 ◽  
Author(s):  
Ying Huang ◽  
Yunjun Yan

Biodiesel is an alternative diesel fuel made from renewable biological resources. During the process of biodiesel production, lipase-catalyzed transesterification is a crucial step. However, current techniques using methanol as acyl acceptor have lower enzymatic activity; this limits the application of such techniques in large-scale biodiesel production. Furthermore, the lipid feedstock of currently available techniques is limited. In this paper, the technique of lipase-catalyzed transesterification of five different oils for biodiesel production with methyl acetate as acyl acceptor was investigated, and the transesterification reaction conditions were optimized. The operation stability of lipase under the obtained optimal conditions was further examined. The results showed that under optimal transesterification conditions, both plant oils and animal fats led to high yields of methyl ester: cotton-seed oil, 98%; rapeseed oil, 95%; soybean oil, 91%; tea-seed oil, 92%; and lard, 95%. Crude and refined cottonseed oil or lard made no significant difference in yields of methyl ester. No loss of enzymatic activity was detected for lipase after being repeatedly used for 40 cycles (ca. 800 h), which indicates that the operational stability of lipase was fairly good under these conditions. Our results suggest that cotton-seed oil, rape-seed oil and lard might substitute soybean oil as suitable lipid feedstock for biodiesel production. Our results also show that our technique is fit for various lipid feedstocks both from plants and animals, and presents a very promising way for the large-scale biodiesel production


RSC Advances ◽  
2016 ◽  
Vol 6 (61) ◽  
pp. 55800-55808 ◽  
Author(s):  
Dinesh Kumar ◽  
Soo Min Kim ◽  
Amjad Ali

Aminolysis of used cotton seed oil derived fatty acid methyl ester (FAMEs).


Sign in / Sign up

Export Citation Format

Share Document