THE ROLES OF ENZYME IN FOOD PROCESSING - AN OVERVIEW

2021 ◽  
Vol 5 (1) ◽  
pp. 157-164
Author(s):  
N. Abdullahi ◽  
M. K. Atiku ◽  
N. B. Umar

Enzymes haven used long in food processing before their discovery as a biological catalyst. Food fermentation was among the early art of food processing and the use of enzymes in fermentation and cheese making started about 6000 BC. The roles of enzymes in food processing and preservation contributed to the development of mankind. They contributed in the areas of baking, cheese making, dairy processing, milling, cereals technology, juice and beverages processing, vegetable processing, oils and fats processing, and wine processing among others. Microorganisms are the earliest and foremost source of enzymes used in food processing, other sources are plant and animal tissues and organs. Advances in science and technology disclosed more potentials of enzymes and biotechnology open doors for commercial production of enzymes with charming properties. The development of enzyme immobilization techniques allows the reused of enzymes without affecting their properties, structure, or activities. Recent advances in genetic engineering and recombinant DNA technology permit the production of enzymes with exceptional properties. The current trends in the production of Extremozymes will open doors for using enzymes under extreme conditions of temperature, pH, and pressure. In food, processing enzymes can be used as ingredients, processing aid, or as a catalyst for both pre-and post-consumption catalysis. Enzymes improve the quality, shelf life, stability, and sensory properties of foods. They play important roles in food processing by lowering energy consumption, minimizing waste, producing desired products specifically required, and making foods more affordable, palatable, and available

Author(s):  
Jiunu S. Lai ◽  
Jar-How Lee ◽  
Shau-Ping Lei ◽  
Yun-Long Lin ◽  
Joachim L. Weickmann ◽  
...  

2019 ◽  
Vol 13 (1) ◽  
pp. 4-18 ◽  
Author(s):  
Satya Eswari Jujjavarapu ◽  
Swasti Dhagat

Background: Amylase catalyzes the breakdown of long-chain carbohydrates to yield maltotriose, maltose, glucose and dextrin as end products. It is present in mammalian saliva and helps in digestion. </P><P> Objective: Their applications in biotechnology include starch processing, biofuel, food, paper, textile and detergent industries, bioremediation of environmental pollutants and in clinical and medical applications. The commercial microbial strains for production of &#945;-amylase are Bacillus subtilis, B. licheniformis, B. amyloliquefaciens and Aspergillus oryzae. Industrial production of enzymes requires high productivity and cannot use wild-type strains for enzyme production. The yield of enzyme from bacteria can be increased by varying the physiological and genetic properties of strains. </P><P> Results: The genetic properties of a bacterium can be improved by enhancing the expression levels of the gene and secretion of the enzyme outside the cells, thereby improving the productivity by preventing degradation of enzymes. Overall, the strain for specific productivity should have the maximum ability for synthesis and secretion of an enzyme of interest. Genetic manipulation of &#945;-amylase can also be used for the production of enzymes with different properties, for example, by recombinant DNA technology. </P><P> Conclusion: This review summarizes different techniques in the production of recombinant &#945;- amylases along with the patents in this arena. The washing out of enzymes in reactions became a limitation in utilization of these enzymes in industries and hence immobilization of these enzymes becomes important. This paper also discusses the immobilization techniques for used α-amylases.


2008 ◽  
Vol 59 (11) ◽  
Author(s):  
Iulia Lupan ◽  
Sergiu Chira ◽  
Maria Chiriac ◽  
Nicolae Palibroda ◽  
Octavian Popescu

Amino acids are obtained by bacterial fermentation, extraction from natural protein or enzymatic synthesis from specific substrates. With the introduction of recombinant DNA technology, it has become possible to apply more rational approaches to enzymatic synthesis of amino acids. Aspartase (L-aspartate ammonia-lyase) catalyzes the reversible deamination of L-aspartic acid to yield fumaric acid and ammonia. It is one of the most important industrial enzymes used to produce L-aspartic acid on a large scale. Here we described a novel method for [15N] L-aspartic synthesis from fumarate and ammonia (15NH4Cl) using a recombinant aspartase.


2021 ◽  
Vol 11 (12) ◽  
pp. 5352
Author(s):  
Ana Margarida Pereira ◽  
Diana Gomes ◽  
André da Costa ◽  
Simoni Campos Dias ◽  
Margarida Casal ◽  
...  

Antibacterial resistance is a major worldwide threat due to the increasing number of infections caused by antibiotic-resistant bacteria with medical devices being a major source of these infections. This suggests the need for new antimicrobial biomaterial designs able to withstand the increasing pressure of antimicrobial resistance. Recombinant protein polymers (rPPs) are an emerging class of nature-inspired biopolymers with unique chemical, physical and biological properties. These polymers can be functionalized with antimicrobial molecules utilizing recombinant DNA technology and then produced in microbial cell factories. In this work, we report the functionalization of rPBPs based on elastin and silk-elastin with different antimicrobial peptides (AMPs). These polymers were produced in Escherichia coli, successfully purified by employing non-chromatographic processes, and used for the production of free-standing films. The antimicrobial activity of the materials was evaluated against Gram-positive and Gram-negative bacteria, and results showed that the polymers demonstrated antimicrobial activity, pointing out the potential of these biopolymers for the development of new advanced antimicrobial materials.


1992 ◽  
Vol 38 (Special) ◽  
pp. 263-266
Author(s):  
O. IFUKU ◽  
S. HAZE ◽  
J. KISHIMOTO ◽  
M. YANAGI

PEDIATRICS ◽  
1984 ◽  
Vol 74 (3) ◽  
pp. 408-411
Author(s):  
Stephen D. Cederbaum

Seldom has a scientific or biomedical break-through evoked the awe, controversy, or sheer incredulity that has accompanied the developments in the field of recombinant DNA technology or more popularly, gene cloning and genetic engineering. Now little more than one generation after Avery, et al1 demonstrated that genes were encoded in DNA and Watson and Crick2 interpreted the structure of these molecules, genes are being cut, manipulated, and recombined to produce unprecedented new insights into genetics and molecular biology and the prospect of gene therapy. These developments have not occurred without anxiety to both scientists and laymen. At the moment, neither the most apocalyptic fears nor the most optimistic dreams appear to be imminent, although I believe that the dreams are closer to fulfillment than the fears. Recombinant DNA technology is already having great impact in hematology, oncology, endocrinology, immunology, and infectious disease and will soon play an important role in other medical subspecialities as well. In none, however, will it have quite the same impact as in genetics because DNA is the material that genetics "is all about." The cloning and study of phenylalanine hydroxylase is one of the first instances in which this technology has important implications in the diseases traditionally classified as inborn errors of metabolism. In order to understand and appreciate the presentation by Woo on phenylalanine hydroxylase as well as the many future papers that will play so vital a role in all of our professional lives, it is necessary to acquire the basic vocabulary of the field.


Sign in / Sign up

Export Citation Format

Share Document