A High-Level RF Compatibility Analysis for RNSS Signal Design

2021 ◽  
Author(s):  
Subin Lee ◽  
Kahee Han ◽  
Jong-Hoon Won
2003 ◽  
Vol 12 (03) ◽  
pp. 261-303 ◽  
Author(s):  
Paul Le Guernic ◽  
Jean-Pierre Talpin ◽  
Jean-Christophe Le Lann

Rising complexities and performances of integrated circuits and systems, shortening time-to-market demands for electronic equipments, growing installed bases of intellectual property (IP), requirements for adapting existing IP blocks with new services, all stress high-level design as a prominent research topic and call for the development of appropriate methodological solutions. In this aim, system design based on the so-called "synchronous hypothesis" consists of abstracting the nonfunctional implementation details of a system and lets one benefit from a focused reasoning on the logics behind the instants at which the system functionalities should be secured. With this point of view, synchronous design models and languages provide intuitive (ontological) models for integrated circuits. This affinity explains the ease of generating synchronous circuits and verify their functionalities using compilers and related tools that implement this approach. In the relational mathematical model behind the design language SIGNAL, this affinity goes beyond the domain of purely synchronous circuits, and embraces the context of complex architectures consisting of synchronous circuits and desynchronization protocols: globally asynchronous and locally synchronous architectures (GALS). The unique features of the relational model behind SIGNAL are to provide the notion of polychrony: the capability to describe circuits and systems with several clocks; and to support refinement: the ability to assist and support system design from the early stages of requirement specification, to the later stages of synthesis and deployment. The SIGNAL model provides a design methodology that forms a continuum from synchrony to asynchrony, from specification to implementation, from abstraction to concretization, from interfaces to implementations. SIGNAL gives the opportunity to seamlessly model circuits and devices at multiple levels of abstractions, by implementing mechanisms found in many hardware simulators, while reasoning within a simple and formally defined mathematical model. In the same manner, the flexibility inherent to the abstract notion of signal, handled in the synchronous-desynchronized design model of SIGNAL, invites and favors the design of correct by construction systems by means of well-defined transformations of system specifications (morphisms) that preserve the intended semantics and stated properties of the architecture under design. The aim of the present article is to review and summarize these formal, correct-by-construction, design transformations. Most of them are implemented in the POLYCHRONY tool-set, allowing for a mixed bottom–up and top–down design of an embedded hardware–software system using the SIGNAL design language.


2014 ◽  
Vol 11 (1) ◽  
pp. 47-59
Author(s):  
Dejan Mirkovic ◽  
Predrag Petkovic

Concerning the fact that the design of contemporary integrated circuits (IC) is practically impossible without using sophisticated Electronic Design Automation (EDA) software, this paper gives some interesting thoughts and considerations about that issue. As technology processes advances on year basis consequently EDA industry is forced to follow this trend as well. This, on the other hand, requires IC designer to frequently and efficiently accommodate to new working environments. Authors of this paper suggest a method for high level circuit analysis that is based on using common (open source or low cost) circuit simulators but precise and fast enough to meet requirements imposed by demanding mixed-signal blocks. The paper demonstrates the proposed EDA procedure on an example of second order ?? modulator design. It illustrates considerable simulation time saving which is more than welcome in a world of analogue and mixed-signal design.


Author(s):  
David P. Bazett-Jones ◽  
Mark L. Brown

A multisubunit RNA polymerase enzyme is ultimately responsible for transcription initiation and elongation of RNA, but recognition of the proper start site by the enzyme is regulated by general, temporal and gene-specific trans-factors interacting at promoter and enhancer DNA sequences. To understand the molecular mechanisms which precisely regulate the transcription initiation event, it is crucial to elucidate the structure of the transcription factor/DNA complexes involved. Electron spectroscopic imaging (ESI) provides the opportunity to visualize individual DNA molecules. Enhancement of DNA contrast with ESI is accomplished by imaging with electrons that have interacted with inner shell electrons of phosphorus in the DNA backbone. Phosphorus detection at this intermediately high level of resolution (≈lnm) permits selective imaging of the DNA, to determine whether the protein factors compact, bend or wrap the DNA. Simultaneously, mass analysis and phosphorus content can be measured quantitatively, using adjacent DNA or tobacco mosaic virus (TMV) as mass and phosphorus standards. These two parameters provide stoichiometric information relating the ratios of protein:DNA content.


Author(s):  
J. S. Wall

The forte of the Scanning transmission Electron Microscope (STEM) is high resolution imaging with high contrast on thin specimens, as demonstrated by visualization of single heavy atoms. of equal importance for biology is the efficient utilization of all available signals, permitting low dose imaging of unstained single molecules such as DNA.Our work at Brookhaven has concentrated on: 1) design and construction of instruments optimized for a narrow range of biological applications and 2) use of such instruments in a very active user/collaborator program. Therefore our program is highly interactive with a strong emphasis on producing results which are interpretable with a high level of confidence.The major challenge we face at the moment is specimen preparation. The resolution of the STEM is better than 2.5 A, but measurements of resolution vs. dose level off at a resolution of 20 A at a dose of 10 el/A2 on a well-behaved biological specimen such as TMV (tobacco mosaic virus). To track down this problem we are examining all aspects of specimen preparation: purification of biological material, deposition on the thin film substrate, washing, fast freezing and freeze drying. As we attempt to improve our equipment/technique, we use image analysis of TMV internal controls included in all STEM samples as a monitor sensitive enough to detect even a few percent improvement. For delicate specimens, carbon films can be very harsh-leading to disruption of the sample. Therefore we are developing conducting polymer films as alternative substrates, as described elsewhere in these Proceedings. For specimen preparation studies, we have identified (from our user/collaborator program ) a variety of “canary” specimens, each uniquely sensitive to one particular aspect of sample preparation, so we can attempt to separate the variables involved.


2020 ◽  
Vol 29 (4) ◽  
pp. 738-761
Author(s):  
Tess K. Koerner ◽  
Melissa A. Papesh ◽  
Frederick J. Gallun

Purpose A questionnaire survey was conducted to collect information from clinical audiologists about rehabilitation options for adult patients who report significant auditory difficulties despite having normal or near-normal hearing sensitivity. This work aimed to provide more information about what audiologists are currently doing in the clinic to manage auditory difficulties in this patient population and their views on the efficacy of recommended rehabilitation methods. Method A questionnaire survey containing multiple-choice and open-ended questions was developed and disseminated online. Invitations to participate were delivered via e-mail listservs and through business cards provided at annual audiology conferences. All responses were anonymous at the time of data collection. Results Responses were collected from 209 participants. The majority of participants reported seeing at least one normal-hearing patient per month who reported significant communication difficulties. However, few respondents indicated that their location had specific protocols for the treatment of these patients. Counseling was reported as the most frequent rehabilitation method, but results revealed that audiologists across various work settings are also successfully starting to fit patients with mild-gain hearing aids. Responses indicated that patient compliance with computer-based auditory training methods was regarded as low, with patients generally preferring device-based rehabilitation options. Conclusions Results from this questionnaire survey strongly suggest that audiologists frequently see normal-hearing patients who report auditory difficulties, but that few clinicians are equipped with established protocols for diagnosis and management. While many feel that mild-gain hearing aids provide considerable benefit for these patients, very little research has been conducted to date to support the use of hearing aids or other rehabilitation options for this unique patient population. This study reveals the critical need for additional research to establish evidence-based practice guidelines that will empower clinicians to provide a high level of clinical care and effective rehabilitation strategies to these patients.


2006 ◽  
Vol 175 (4S) ◽  
pp. 260-260
Author(s):  
Rile Li ◽  
Hong Dai ◽  
Thomas M. Wheeler ◽  
Anna Frolov ◽  
Gustavo Ayala

Author(s):  
Solomon W. Golomb ◽  
Guang Gong
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document