scholarly journals Estructura de bandas en un cristal fotónico unidimensional y bidimensional

2018 ◽  
pp. 20-25

Estructura de bandas en un cristal fotónico unidimensional y bidimensional Band structure in a photonic crystal one dimensional and two dimensional José Luis León Aguirre Universidad Nacional del Callao DOI: https://doi.org/10.33017/RevECIPeru2015.0003/ Resumen Una nueva idea se ha estado desarrollando en las últimas décadas, cuyo objetivo es lograr control de las propiedades ópticas de materiales con el fin de resolver ciertos problemas sujetos a nuevas aplicaciones, como por ejemplo: obtener materiales que respondan a las ondas de luz sobre un rango de frecuencias deseados para obtener  su total reflexión. Este trabajo se enfoca en el desarrollo matemático del  problema de las estructuras  de bandas  de un cristal  fotónico,  utilizando el  método de expansión de ondas  planas  a los casos particulares de una y dos dimensiones. Abstract A new concept has been developing in recent decades, whose aim is to achieve control of the optical properties of materials in order to solve certain problems subject to new applications, such as for example: To obtain materials to meet the waves of light on a range of desired frequencies to get your total reflection. This work focuses on the mathematical development of the problem of the structures of bands of a photonic crystal, using the method of expansion of flat waves to individual cases of one and two dimensions.

2002 ◽  
Vol 16 (08) ◽  
pp. 1217-1223 ◽  
Author(s):  
K. V. MCCLOUD ◽  
M. L. KURNAZ

The roughness exponent of surfaces obtained by dispersing silica spheres into a quasi-two-dimensional cell is examined. The cell consists of two glass plates separated by a gap, which is comparable in size to the diameter of the beads. Previous work has shown that the quasi-one-dimensional surfaces formed have two roughness exponents in two length scales, which have a crossover length about 1 cm. We have studied the effect of changing the gap between the plates to a limit of about twice the diameter of the beads. If the conventional scaling analysis is performed, the roughness exponent is found to be robust against changes in the gap between the plates; however, the possibility that scaling does not hold should be taken seriously.


1965 ◽  
Vol 21 (1) ◽  
pp. 307-312
Author(s):  
William C. Roehrig

A rugged electro-mechanical tracking apparatus of simple, low-cost construction is described. The apparatus can be used for one-dimensional tracking by connecting only the longitudinal motor, thus forcing the target to move back and forth in either simple sinusoidal motion or according to the sum of two or three sinusoids. The relative phases of the three sinusoids can be rapidly altered, as can the amplitudes (within limits) of each of the sinusoids. The frequency of the sinusoids can be changed either independently or conjointly. By also connecting the cross-feed motor, an essentially unpredictable target path in two dimensions is obtained, and this path can be rapidly altered by changing cams, and/or frequency, amplitude, and phase of the sinusoids. Movement of the cursor is by low, constant torque lathe-type controls. The distance the cursor moves per each rotation of the controls, can be altered for either or both of the controls. A continuous error signal is generated which is directly proportional to the distance the cursor is off target in any direction.


Fractals ◽  
1996 ◽  
Vol 04 (04) ◽  
pp. 469-475 ◽  
Author(s):  
ZBIGNIEW R. STRUZIK

The methodology of the solution to the inverse fractal problem with the wavelet transform1,2 is extended to two-dimensional self-affine functions. Similar to the one-dimensional case, the two-dimensional wavelet maxima bifurcation representation used is derived from the continuous wavelet decomposition. It possesses translational and scale invariance necessary to reveal the invariance of the self-affine fractal. As many fractals are naturally defined on two-dimensions, this extension constitutes an important step towards solving the related inverse fractal problem for a variety of fractal types.


1992 ◽  
Vol 14 (4) ◽  
pp. 398-414 ◽  
Author(s):  
P. D. Freiburger ◽  
D. C. Sullivan ◽  
B. H. LeBlanc ◽  
S. W. Smith ◽  
G. E. Trahey

Two dimensional arrival time data was obtained for the propagation of ultrasound across the breasts of 7 female volunteers. These profiles were extracted through the use of cross-correlation measurements and a simulated annealing process that maintained phase closure while aligning the data. The phase aberration measured in two dimensions had a larger magnitude than previously reported phase aberration measured in one dimension in the breast A point spread function generation computer program was used to demonstrate the system response degrading effects of the measured phase aberration and the usefulness of current one dimensional phase aberration correction techniques. The results indicate that two dimensional correction algorithms are necessary to restore the system performance losses due to phase aberration.


2018 ◽  
Vol 30 (04) ◽  
pp. 756-790 ◽  
Author(s):  
BENJAMIN F. AKERS ◽  
DAVID M. AMBROSE ◽  
DAVID W. SULON

In a prior work, the authors proved a global bifurcation theorem for spatially periodic interfacial hydroelastic travelling waves on infinite depth, and computed such travelling waves. The formulation of the travelling wave problem used both analytically and numerically allows for waves with multi-valued height. The global bifurcation theorem required a one-dimensional kernel in the linearization of the relevant mapping, but for some parameter values, the kernel is instead two-dimensional. In the present work, we study these cases with two-dimensional kernels, which occur in resonant and non-resonant variants. We apply an implicit function theorem argument to prove existence of travelling waves in both of these situations. We compute the waves numerically as well, in both the resonant and non-resonant cases.


1970 ◽  
Vol 16 (8) ◽  
pp. 662-666 ◽  
Author(s):  
F Kraffczyk ◽  
R Helger ◽  
H Lang

Abstract Separation of the amino acids in urine by use of thin-layer chromatography (TLC) has hitherto required that the specimen be first desalted and then chromatographed in two dimensions with at least two pairs of developing solvent systems. We wished to simplify both steps. The customary method of desalting on a column is replaced by desalting on a plate that supports a strongly acid cation-exchanger and a cellulose layer. This method, originally developed for one-dimensional TLC, is used here for two-dimensional TLC. Urine is applied to the ion-exchange layer and strong acids and neutral substances are removed with water. The amino acids are then chromatographed into the cellulose layer, and are separated there two dimensionally with a newly devised pair of developing solutions. This pair of solvents separates nearly all of the amino acids in urine.


2001 ◽  
Author(s):  
Robert Vance ◽  
Indrek S. Wichman

Abstract A linear stability analysis is performed on two simplified models representing a one-dimensional flame between oxidizer and fuel reservoirs and a two-dimensional “edge-flame” between the same reservoirs but above a cold, inert wall. Comparison of the eigenvalue spectra for both models is performed to discern the validity of extending the results from the one-dimensional problem to the two-dimensional problem. Of primary interest is the influence on flame stability of thermal-diffusive imbalances, i.e. non-unity Lewis numbers. Flame oscillations are observed when Le > 1, and cellular flames are witnessed when Le < 1. It is found that when Le > 1 the characteristics of flame behavior are consistent between the two models. Furthermore, when Le < 1, the models are found to be in good agreement with respect to the magnitude of the critical wave numbers. Results from the coarse mesh analysis of the two-dimensional system are presented and compared to the one-dimensional eigenvalue spectra. Additionally, an examination of low reactant convection is undertaken. It is concluded that for low flow rates the behavior in one and two dimensions are similar qualitatively and quantitatively.


2016 ◽  
Vol 45 (2) ◽  
pp. 223003
Author(s):  
武振华 WU Zhenhua ◽  
李思敏 LI Simin ◽  
张文涛 ZHANG Wentao ◽  
高凤艳 GAO Fengyan

2019 ◽  
Vol 31 (6) ◽  
pp. 882-893
Author(s):  
Kouki Sato ◽  
Luis Canete ◽  
Takayuki Takahashi ◽  
◽  

The objective of this study is to extend the application of the spray-coated tactile sensor, ScoTacS, which is being developed by the authors and can be constructed simply by “coating” with a spray gun, from one dimension to two dimensions, and further to configure it into various shapes such as a ring. This sensor is constructed by coating three layers-conductive, piezoelectric, and resistive films-in sequence. It is based on a unique principle by which the contact position is detected from the delay time, i.e., the time difference between the arrivals of peaks in the output signals. As the delay time varies with the contact position, it can be used to estimate the contact position. In this paper, after analyzing the characteristics of one-dimensional sensors, such as linear and ring sensors, we present the equivalent circuit models and experimental results of a two-dimensional sensor fully coated on a cylinder.


Sign in / Sign up

Export Citation Format

Share Document