scholarly journals Aspergillus sclerotiorum fungus is lethal to both Western drywood (Incisitermes minor) and Western subterranean (Reticulitermes hesperus)termites

Fine Focus ◽  
2016 ◽  
Vol 2 (1) ◽  
pp. 23-38 ◽  
Author(s):  
Gregory M. Hansen ◽  
Tyler S. Laird ◽  
Erica Woertz ◽  
Daniel Ojala ◽  
Daralynn Glanzer ◽  
...  

Termite control costs $1.5 billion per year in the United States alone, and methods for termite control usually consist of chemical pesticides. However, these methods have their drawbacks, which include the development of resistance, environmental pollution, and toxicity to other organisms. Biological termite control, which employs the use of living organisms to combat pests, offers an alternative to chemical pesticides. This study highlights the discovery of a fungus, termed “APU strain,” that was hypothesized to be pathogenic to termites. Phylogenetic and morphological analysis showed that the fungus is a strain of Aspergillus sclerotiorum, andexperiments showed that both western drywood (Incisitermes minor) and western subterranean (Reticulitermes hesperus) termites die in a dose-dependent manner exposed to fungal spores of A. sclerotiorum APU strain. In addition, exposure to the A. sclerotiorum Huber strain elicited death in a similar manner as the APU strain. The mechanism by which the fungus caused termite death is still unknown and warrants further investigation. While these results support that A. sclerotiorum is a termite pathogen, further studies are needed to determine whether the fungal species has potential as a biological control agent.

Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 711
Author(s):  
Long Zhang ◽  
Michel Lecoq

Effective locust and grasshopper control is crucial as locust invasions have seriously threatened crops and food security since ancient times. However, the preponderance of chemical insecticides, effective and widely used today, is increasingly criticized as a result of their adverse effects on human health and the environment. Alternative biological control methods are being actively sought to replace chemical pesticides. Nosema locustae (Synonyms: Paranosema locustae, Antonospora locustae), a protozoan pathogen of locusts and grasshoppers, was developed as a biological control agent as early as the 1980s. Subsequently, numerous studies have focused on its pathogenicity, host spectrum, mass production, epizootiology, applications, genomics, and molecular biology. Aspects of recent advances in N. locustae show that this entomopathogen plays a special role in locust and grasshopper management because it is safer, has a broad host spectrum of 144 orthopteran species, vertical transmission to offspring through eggs, long persistence in locust and grasshopper populations for more than 10 years, and is well adapted to various types of ecosystems in tropical and temperate regions. However, some limitations still need to be overcome for more efficient locust and grasshopper management in the future.


Plant Disease ◽  
1998 ◽  
Vol 82 (4) ◽  
pp. 374-379 ◽  
Author(s):  
Y. Luo ◽  
D. O. TeBeest

The fungus Colletotrichum gloeosporioides f. sp. aeschynomene causes an anthracnose on Aeschynomene virginica and has been used as a biological control agent to control this weed in the United States. The population dynamics of a wild-type strain (3-1-3) and two mutant strains of 3-1-3 of C. gloeosporioides f. sp. aeschynomene, a benomyl-resistant strain (B21) and nitrate-nonutilizing strain (Nit A), were studied in field tests on northern jointvetch in 1994 and 1995 to determine how the strains interacted on infected plants under field conditions. Plants were co-inoculated with strains 3-1-3 and B21, strains 3-1-3 and Nit A, and strains 3-1-3, B21, and Nit A at equal and unequal initial proportions. Plants were grown and maintained under flooded conditions in small wading pools. In co-inoculation of plants with 3-1-3 and B21 from equal initial proportions, the population of 3-1-3 increased slightly until it reached a proportion of 60 to 70%, whereas the population density of B21 reached 30 to 40% at the end of growing season. From unequal initial proportions, the population density of B21 decreased from 90 to about 50%, whereas the 3-1-3 increased from 10 to 50%. The population density of 3-1-3 increased from an equal initial proportion and was significantly greater than that of Nit A on every sampling time. From unequal initial proportions, the population density of 3-1-3 increased from 10 to 90%, whereas that of Nit A declined. In co-inoculation of plants with the three strains, the population density of 3-1-3 was significantly greater than those of the mutant strains at every sampling time. The proportions of mutant strains within the total population of C. gloeosporioides f. sp. aeschynomene on plants varied according to the test conditions and the number and types of strains co-inoculated.


2011 ◽  
Vol 43 (2) ◽  
pp. 269
Author(s):  
Behzad Habibpour ◽  
Amir Cheraghi ◽  
Mohammad Saeed Mossadegh

This article is the first report on the promising effect of an entomopathogenic fungus, <em>Metarhizium anisopliae</em> (Metschnikoff) Sorokin to control populations of <em>Microcerotermes diversus </em>Silvestri. Biological control is an alternative to the long-term usage of chemical pesticides.<em> M. anisopliae</em>, the causal agent of green muscardine disease of insects, is an important fungus in biological control of insect pests. Bait systems can eliminate entire colonies of subterranean termites. Baiting reduces adverse environmental impacts caused by organochlorine and organophosphate pesticides in the control of termites and creates sustainable protection of buildings against their invasion. Treated-sawdust bait was applied by two methods: a) combination of treated sawdust and untreated filter paper, and b) combination of treated sawdust and untreated sawdust. When combinations of treated sawdust and untreated sawdust were used, LC50 and LC90 were 8.4&times;106 and 3.9&times;107 (spore/ml), respectively. With the use of improved bait formula and more virulent strains, we hope to achieve better control of termite colonies and enable pathogens to become a useful element in the Integrated Pest Management system.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Alexander M. Gaffke ◽  
Sharlene E. Sing ◽  
Tom L. Dudley ◽  
Daniel W. Bean ◽  
Justin A. Russak ◽  
...  

Abstract The northern tamarisk beetle Diorhabda carinulata (Desbrochers) was approved for release in the United States for classical biological control of a complex of invasive saltcedar species and their hybrids (Tamarix spp.). An aggregation pheromone used by D. carinulata to locate conspecifics is fundamental to colonization and reproductive success. A specialized matrix formulated for controlled release of this aggregation pheromone was developed as a lure to manipulate adult densities in the field. One application of the lure at onset of adult emergence for each generation provided long term attraction and retention of D. carinulata adults on treated Tamarix spp. plants. Treated plants exhibited greater levels of defoliation, dieback and canopy reduction. Application of a single, well-timed aggregation pheromone treatment per generation increased the efficacy of this classical weed biological control agent.


Insects ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 224
Author(s):  
Wang-Peng Shi ◽  
Xiao-Yu Wang ◽  
Yue Yin ◽  
Yu-Xing Zhang ◽  
Um-e-Hani Rizvi ◽  
...  

Substantial harm to ecosystems from the use of chemical pesticides has led to an increasing interest in the use of biopesticides to control grasshoppers in rangelands, including China. One such potential biopesticide for control of grasshoppers is the fungus Paranosema locustae. In this study, the dynamics of aboveground natural enemies of grasshoppers and arthropod diversity 0–9 years after application of P. locustae were investigated in rangeland in Qinghai Plateau, China. We found that the number of species and of individuals of aboveground natural enemies increased by 17–250% and 40–126%, respectively, after spraying P. locustae, and that the main natural enemies showed three peaks after treatment. The conventional indices of species diversity (H’) and evenness (J’) increased by 11–267% and 13–171%, respectively, after treatment with P. locustae. The results showed the positive effects of P. locustae on aboveground natural enemies and biodiversity in an arthropod community in Chinese rangeland. Paranosema locustae is thought to be a safe biological control agent for grasshopper management in Northwestern China.


1995 ◽  
Vol 30 (2) ◽  
pp. 279-286 ◽  
Author(s):  
J. E. Carpenter

Ichneumon (=Pterocormus) promissorius (Erichson) (Hymenoptera: Ichneumomidae), a native of Australia, is a pupal parasitoid which searches the soil surface for host pupation sites, burrows into a pupal gallery, and oviposits in the host pupa. Fecundity and rate of oviposition were influenced by the mating status of females, the host from which females developed, and the frequency in which females were exposed to hosts. Virgin females continued laying eggs many days after mated females had stopped. A preoviposition period of 17 d in mated females did not affect the oviposition curve or the number of eggs laid, suggesting that the oogenesis is arrested until female wasps are exposed to host pupae. Female wasps exposed to pupae for 24 h every fifth day lived longer than female wasps continuously exposed to pupae. However, females that were continuously exposed to pupae laid more eggs. Virgin females reared on Spodoptera exigua (Hübner) pupae laid fewer eggs than virgin females reared on Helicoverpa zea (Boddie) pupae. These data will be important in evaluating the potential of I. promissorius as a biological control agent for pest species in the United States and will be useful in developing laboratory rearing procedures for I. promissorius.


EDIS ◽  
2019 ◽  
Vol 2019 (4) ◽  
pp. 5
Author(s):  
Patricia Prade ◽  
Eutychus Kariuki ◽  
Adam Dale

The salvinia weevil, Cyrtobagous salviniae (Calder & Sands) (Coleoptera: Curculionidae) (Figure 1), is a subaquatic (underwater) herbivorous insect native to Brazil (Calder and Sands 1985). This insect feeds on the invasive aquatic plants Salvinia molesta D. S. Mitchell and Salvinia minima (Baker). This insect is an effective classical biological control agent used in several countries to control the invasive giant salvinia, Salvinia molesta (D. S. Mitch). Feeding by Cyrtobagous salviniae larvae and adults kills its invasive host plants and restores recreational, agricultural, and ecosystem functions in aquatic systems. In the United states, the insect has been credited for controlling Salvinia minima in Florida (Jacono et al. 2001) and causing the decline of Salvinia molesta in Texas and Louisiana (Tipping et al. 2008).


2018 ◽  
Vol 65 ◽  
pp. 111-130 ◽  
Author(s):  
Fatemeh Ganjisaffar ◽  
Elijah J. Talamas ◽  
Marie-Claude Bon ◽  
Brian V. Brown ◽  
Lisa Gonzalez ◽  
...  

TrissolcushyalinipennisRajmohana &amp; Narendran is an Old World egg parasitoid ofBagradahilaris(Burmeister). Its potential as a classical biological control agent in the United States has been under evaluation in quarantine facilities since 2014. A survey of resident egg parasitoids using fresh sentinelB.hilariseggs in Riverside, California, revealed thatT.hyalinipennisis present in the wild. Four cards with parasitized eggs were recovered, from which one yielded a single liveT.hyalinipennisand two unidentified dead wasps (Scelionidae), and three yielded twenty liveTrissolcusbasalis(Wollaston) and one dead wasp. Subsequently, samples from Burbank, California, collected with a Malaise trap as part of the BioSCAN project, yielded five females ofT.hyalinipennis. It is presumed that the introduction ofT.hyalinipennisto this area was accidental. Surveys will be continued to evaluate the establishment ofT.hyalinipennisas well as the presence of other resident parasitoid species.


Sign in / Sign up

Export Citation Format

Share Document