scholarly journals Analisa Perhitungan Dimensi Turap Kayu (Panjang Kayu Ditanam Dan Tebal) Sebagai Dinding Penahan Tanah Sementara

2021 ◽  
Vol 21 (3) ◽  
pp. 1057
Author(s):  
Ellyta Mona

At this time, the development of retaining structures continues to be optimized according to the available land use, to deal with current and future landslides. The structure of the retaining wall (Turap) is expected to provide a solution for the handling. Based on the type of material used, several types of sheet pile are known, namely; wood sheet pile, concrete sheet pile and steel sheet pile, and based on the type of construction there are two types, namely; cantilever type and anchor type. Sheet pile made of wood, the function of this material is to retain the soil which is not so high. This is because the wood material will not be able to withstand excessive soil or gravel loads. In a handling, knowing the function or planning for handling avalanches is very important, because by knowing the purpose and function of the plan, it can be easier in the design and planning process. Calculations for the quality and efficiency of handling can be achieved as desired. The purpose of this study was to analyze the planning calculation of the dimensions of the temporary wood sheet pile (length of planted wood and thickness) as a soil barrier that was built to prevent landslides caused by the intensity of rain. From the results of the research that has been carried out, the planning of wooden sheet piles with a width of 1 meter and 2 meters as retaining walls and for soil volume ranges from 20 KN/M3-30 KN/M3 while the height of sheet piles is 1 meter - 4 meters. It was found that the length of the sheet pile planted did not affect changes in the volume of the soil while the thickness of the wood did.

Geosciences ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 486
Author(s):  
Xiaoyu Guan ◽  
Gopal S. P. Madabhushi

In an urban environment, it is often necessary to locate structures close to existing retaining walls due to congestion in space. When such structures are in seismically active zones, the dynamic loading attracted by the retaining wall can increase. In a novel approach taken in this paper, finite element-based numerical analyses are presented for the case of a flexible, cantilever sheet pile wall with and without a structure on the backfill side. This enables a direct comparison of the influence exerted by the structure on the dynamic behaviour of the retaining wall. In this paper, the initial static bending moments and horizontal stresses prior to application of any earthquake loading are compared to Coulomb’s theory. The dynamic behaviour of the retaining wall is compared in terms of wall-top accelerations and bending moments for different earthquake loadings. The dynamic structural rotation induced by the differential settlements of the foundations is presented. The accelerations generated in the soil body are considered in three zones, i.e., the free field, the active and the passive zones. The differences caused by the presence of the structure are highlighted. Finally, the distribution of horizontal soil pressures generated by the earthquake loading behind the wall, and in front of the wall is compared to the traditional Mononobe-Okabe type analytical solutions.


2021 ◽  
Vol 4 (3) ◽  
pp. 695
Author(s):  
David Thomson ◽  
Aniek Prihatiningsih

Kalimantan is one of the 3 islands in Indonesia which has the largest peatlands. Moreover, in 2019 the President of the Republic of Indonesia Ir. H. Joko Widodo inaugurated the move of Indonesia's capital city from DKI Jakarta to East Kalimantan. The development of supporting infrastructure for the Capital City will inevitably occur, so that construction on peatlands cannot be avoided. The characteristics of peatlands as well as the impacts and risks that will occur when working on peatlands need to be considered. In this thesis, we will discuss the types of retaining walls that are most effective when applied to peatlands. Types of retaining walls that will be compared include gravity retaining walls, sheet sheet-type retaining walls, and soldier piles. The analysis will be carried out on the lateral stresses that occur and the collapse in each type of retaining wall. Coulumb soil pressure theory and Rankine soil lateral pressure theory are also used to support this analysis. Theoretically, solid or gap-free retaining walls are likely to be effective when applied to peat soils. This is due to the nature of peat soil which has high water and organic content. The depth of excavation on peat soil is calculated as deep as 9 meters. The deflection that occurs in the diaphragm wall is 0.354 m, the secant pile is 0.751 m, the concrete sheet pile is 1.09 m and the steel sheet pile is 2.73 m. Kalimantan adalah salah satu dari 3 pulau di Indonesia yang memiliki lahan gambut terluas. Terlebih lagi pada tahun 2019 Presiden Republik Indonesia Ir. H. Joko Widodo meresmikan perpindahan Ibukota Indonesia dari DKI Jakarta ke Kalimantan Timur. Pembangunan infrastruktur – infrastruktur pendukung Ibukota pasti akan terjadi, sehingga kontruksi pada lahan gambut tidak akan dapat terhindarkan. Sifat-sifat dari lahan gambut maupun dampak dan resiko yang akan terjadi pada saat melakukan pekerjaan di lahan gambut perlu dipertimbangkan. Pada skripsi ini akan membahas tentang jenis dinding penahan tanah yang paling efektif ketika diaplikasikan ke lahan gambut. Jenis dinding penahan tanah yang akan dibandingkan antara lain dinding penahan gravitasi, dinding penahan tanah tipe turap, dan soldier pile. Analisa akan dilakukan pada tekanan lateral yang terjadi dan keruntuhan pada tiap jenis dinding penahan tanah. Teori tekanan tanah Coulumb dan teori tekanan lateral tanah Rankine dipakai juga untuk mendukung analisis ini. Secara teoritis, dinding penahan tanah yang solid atau yang tidak mempunyai celah yang berkemungkinan akan efektif ketika diaplikasikan pada tanah gambut. Hal ini dikarenakan sifat tanah gambut yang mempunyai kadar air dan organik yang tinggi. Kedalaman galian pada tanah gambut yang diperhitungkan sedalam 9 meter. Defleksi yang terjadi pada diaphragm wall adalah sebesar 0,354 m, pada secant pile sebesar 0,751 m, pada turap beton sebesar 1,09 m dan pada turap baja sebesar 2,73 m.


2018 ◽  
Vol 2 (2) ◽  
pp. 86
Author(s):  
Mila K. Wardani ◽  
Felicia T. Nuciferani ◽  
Mohamad F.N. Aulady

Landslide one of the natural disasters that caused many victims. Therefore, the landslide need a construction that can withstand landslide force. This study aims to plan retaining walls to prevent landslides in the farm area in Kandangan Subdistrict, Kediri Regency. The method used is to use slide analysis which is used to plan the retaining wall. In addition the planning of soil containment walls u ses several methods as a comparison. The results of this study indicate that the planning of ordinary soil retaining walls is still not enough to overcome slides. The minimum SF value that meets the safe limit of landslide prevention is 1.541 in the combination of 1/3 H terracing and the number of gabions as many as 7 with a total height of 2- 3 m .


Author(s):  
Olha Dorosh ◽  
Iryna Kupriyanchik ◽  
Denys Melnyk

The land and town planning legislation concerning the planning of land use development within the united territorial communities (UTC) is considered. It is found that legislative norms need to be finalized. The necessity of updating the existing land management documentation developed prior to the adoption of the Law of Ukraine "On Land Management" and changes in the structure of urban development in connection with the adoption of the Law of Ukraine "On Regulation of Urban Development" was proved as they do not ensure the integrity of the planning process within the territories of these communities through their institutional incapacity (proved by the example of the Palan Unified Territorial Community of the Uman district of the Cherkasy region). The priority of land management and urban planning documents as the most influential tools in planning the development of land use systems in UTC is scientifically grounded and their interdependence established.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 746
Author(s):  
Xinquan Wang ◽  
Cong Zhu ◽  
Hongguo Diao ◽  
Yingjie Ning

The retaining wall is a common slope protection structure. To tackle the current lack of sustainable and highly prefabricated retaining walls, an environmentally friendly prefabricated ecological grid retaining wall with high construction efficiency has been developed. Due to the asymmetrical condition of the project considered in this paper, the designed prefabricated ecological grid retaining wall was divided into the excavation section and the filling section. By utilizing the ABAQUS finite element software, the stress and deformation characteristics of the retaining wall columns, soil, anchor rods, and inclined shelves in an excavation section, and the force and deformation relationships of the columns, rivets, and inclined shelves in three working conditions in a filling section were studied. The study results imply that the anchor rods may affect the columns in the excavation section and the stress at the column back changes in an M-shape with height. Moreover, the peak appears at the contact point between the column and the anchor rod. The displacement of the column increases slowly along with the height, and the column rotates at its bottom. In the excavation section, the stress of the anchor rod undergoes a change at the junction of the structure. The inclined shelf is an open structure and is very different from the retaining plate structure of traditional pile-slab retaining walls. Its stress distribution follows a repeated U-shaped curve, which is inconsistent with the trend of the traditional soil arching effect between piles, which increases first and then decreases. For the retaining wall structure in the filling section, the numerical simulated vehicle load gives essentially consistent results with the effects of the equivalent filling on the concrete column.


Land ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 90
Author(s):  
Miroslav Kopáček

Civic participation has an irreplaceable role in the land-use planning process because it contributes a practical perspective to expert knowledge. This article discusses whether there is actually a level of civic participation that can be considered optimal, which would allow experts to effectively obtain information from everyday users of the territory, who have the best practical knowledge of it; experts may also gain sufficient feedback on intended developments, based on knowledge about civic participation from representatives of individual municipalities. The article also proposes measures that can promote an optimal degree of participation in the land-use planning process. The fieldwork was conducted in the form of semi-structured interviews with the mayors of municipalities with a population of up to 2000 inhabitants in selected districts of the Ústí Region (Czech Republic). The results suggest that the optimal degree of civic participation in land-use planning should have a representative extent, so it should not merely be a matter of individuals, but also one of groups of dozens of people, and such groups should encompass a balanced variety of characteristics; an optimal level of civic participation should also provide the maximum number of relevant impulses. Measures that may secure and foster an optimal degree of civic participation in land-use planning include (1) striving to avoid preferring purely voluntary participation; (2) simultaneously utilizing various tools to engage inhabitants; (3) educating inhabitants on a regular basis; and (4) consistently communicating and providing feedback, while also searching for informal means of communication and discussion.


Sign in / Sign up

Export Citation Format

Share Document