Review and Evaluation of Data Availability and Network Consistency in Wireless Sensor Networks

Author(s):  
Mujahid Tabassum ◽  
Sundresan Perumal ◽  
Azni Haslizan Ab Halim

Rapid development of Information and Communication Technologies (ICTs) has greatly influenced and transformed industries. The convergence of digital media and knowledge base platforms promoted new evolving concepts and ideas between various industries to solve the complex problems. Smart grid, smart homes, smart intelligence and surveillance systems offer a wide range of connectivity and productivity to the mankind. Mainly, these systems are examples of the Internet of things (IoT) in which many sensor nodes work together to perform continuous intelligence, monitoring and management related tasks. Wireless Sensor Networks (WSN) are one of the examples of IoT networks and are being used in many industries for mobility, scalability, reliability, intelligent monitoring and management purposes. In many developed countries, WSN technology has been used to monitor the agriculture crops health and growth to boost their economy. Utilization of modern equipment in the agriculture industry is essentially required to boost people’s income and create a positive impact on their social life. In this research paper, we have reviewed various WSN industrial hardware infrastructures and performe

Fault Tolerant Reliable Protocol (FTRP) is proposed as a novel routing protocol designed for Wireless Sensor Networks (WSNs). FTRP offers fault tolerance reliability for packet exchange and support for dynamic network changes. The key concept used is the use of node logical clustering. The protocol delegates the routing ownership to the cluster heads where fault tolerance functionality is implemented. FTRP utilizes cluster head nodes along with cluster head groups to store packets in transient. In addition, FTRP utilizes broadcast, which reduces the message overhead as compared to classical flooding mechanisms. FTRP manipulates Time to Live values for the various routing messages to control message broadcast. FTRP utilizes jitter in messages transmission to reduce the effect of synchronized node states, which in turn reduces collisions. FTRP performance has been extensively through simulations against Ad-hoc On-demand Distance Vector (AODV) and Optimized Link State (OLSR) routing protocols. Packet Delivery Ratio (PDR), Aggregate Throughput and End-to-End delay (E-2-E) had been used as performance metrics. In terms of PDR and aggregate throughput, it is found that FTRP is an excellent performer in all mobility scenarios whether the network is sparse or dense. In stationary scenarios, FTRP performed well in sparse network; however, in dense network FTRP’s performance had degraded yet in an acceptable range. This degradation is attributed to synchronized nodes states. Reliably delivering a message comes to a cost, as in terms of E-2-E. results show that FTRP is considered a good performer in all mobility scenarios where the network is sparse. In sparse stationary scenario, FTRP is considered good performer, however in dense stationary scenarios FTRP’s E-2-E is not acceptable. There are times when receiving a network message is more important than other costs such as energy or delay. That makes FTRP suitable for wide range of WSNs applications, such as military applications by monitoring soldiers’ biological data and supplies while in battlefield and battle damage assessment. FTRP can also be used in health applications in addition to wide range of geo-fencing, environmental monitoring, resource monitoring, production lines monitoring, agriculture and animals tracking. FTRP should be avoided in dense stationary deployments such as, but not limited to, scenarios where high application response is critical and life endangering such as biohazards detection or within intensive care units.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2417
Author(s):  
Andrzej Michalski ◽  
Zbigniew Watral

This article presents the problems of powering wireless sensor networks operating in the structures of the Internet of Things (IoT). This issue was discussed on the example of a universal end node in IoT technology containing RFID (Radio Frequency Identification) tags. The basic methods of signal transmission in these types of networks are discussed and their impact on the basic requirements such as range, transmission speed, low energy consumption, and the maximum number of devices that can simultaneously operate in the network. The issue of low power consumption of devices used in IoT solutions is one of the main research objects. The analysis of possible communication protocols has shown that there is a possibility of effective optimization in this area. The wide range of power sources available on the market, used in nodes of wireless sensor networks, was compared. The alternative possibilities of powering the network nodes from Energy Harvesting (EH) generators are presented.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Asmaa Ez-Zaidi ◽  
Said Rakrak

Wireless sensor networks have been the subject of intense research in recent years. Sensor nodes are used in wide range of applications such as security, military, and environmental monitoring. One of the most interesting applications in wireless sensor networks is target tracking, which mainly consists in detecting and monitoring the motion of mobile targets. In this paper, we present a comprehensive survey of target tracking approaches. We then analyze them according to several metrics. We also discuss some of the challenges that influence the performance of tracking schemes. In the end, we conduct detailed analysis and comparison between these algorithms and we conclude with some future directions.


Author(s):  
Pradeep Kumar Ts ◽  
Sayali Chitnis

The world of internet of things (IoT) and automation has been catching a robust pace to impact wide range of commercial and domestic applications for some time now. The IoT holds ad-hoc or wireless sensor networks (WSNs) at its very primary implementation level, the hardware level. The increasing requirement of these networks demands a renewed and better design of the network that improves the already existing setbacks of WSNs, which is mainly the power consumption and optimization. Routing highly affects the power consumed in the nodes in WSNs, hence having a modified routing algorithm which is specific to the application and meets its needs, particularly it is a good approach instead of having a generalized existent routing approach. Currently, for WSN having adequate number of nodes, routing involves maximum number of nodes and hops so as to reduce power consumption. However, for restricted areas and limited nodes, this scenario concludes with using up more number of nodes simultaneously resulting in reducing several batteries simultaneously. A routing algorithm is proposed in this paper for such applications that have a bounded region with limited resources. The work proposed in this paper is motivated from the routing algorithm positional attribute based next-hop determination approach (PANDA-TP) which proposes the increase in number of hops to reduce the requirement of transmission power. The aim of the proposed work is to compute the distance between the sending and receiving node and to measure the transmission power that would be required for a direct(path with minimum possible hops) and a multi-hop path. If the node is within the thresh-hold distance of the source, the packet is undoubtedly transferred directly; if the node is out of the thresh-hold distance, then the extra distance is calculated. Based on this, the power boosting factor for the source node, and if necessary, then the extra number of nodes that would be required to transmit is determined. An extra decision-making step is added to this approach which makes it convenient to utilize in varied situations. This routing approach suits the current level of robustness that the WSNs demand. 


2017 ◽  
Vol 13 (2) ◽  
pp. 155014771668968 ◽  
Author(s):  
Sunyong Kim ◽  
Sun Young Park ◽  
Daehoon Kwon ◽  
Jaehyun Ham ◽  
Young-Bae Ko ◽  
...  

In wireless sensor networks, the accurate estimation of distances between sensor nodes is essential. In addition to the distance information available for immediate neighbors within a sensing range, the distance estimation of two-hop neighbors can be exploited in various wireless sensor network applications such as sensor localization, robust data transfer against hidden terminals, and geographic greedy routing. In this article, we propose a two-hop distance estimation method, which first obtains the region in which the two-hop neighbor nodes possibly exist and then takes the average of the distances to the points in that region. The improvement in the estimation accuracy achieved by the proposed method is analyzed in comparison with a simple summation method that adds two single-hop distances as an estimate of a two-hop distance. Numerical simulation results show that in comparison with other existing distance estimation methods, the proposed method significantly reduces the distance estimation error over a wide range of node densities.


2014 ◽  
Vol 989-994 ◽  
pp. 4737-4741
Author(s):  
Heng Wang ◽  
Bao Guo Wang ◽  
Shi Qiang Zhao ◽  
Xia Fu Lv

With the rapid development of Internet of things, IPv6 has been introduced into wireless sensor networks and widely used in many areas. It is significant to develop routing devices to connect wireless sensor networks and the Internet based on IPv6 technology. In this paper, we present a 6LoWPAN (IPv6 over Low power Wireless Personal Area Networks) border router scheme. The hardware design and software design are discussed and the experimental results demonstrate the feasibility of the router scheme. By using the proposed border router, the network can achieve end-to-end communications between 6LoWPAN nodes and IPv6 hosts in a universal method.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Baojiang Cui ◽  
Ziyue Wang ◽  
Bing Zhao ◽  
Xiaobing Liang ◽  
Yuemin Ding

With rapid development and extensive use of wireless sensor networks (WSNs), it is urgent to enhance the security for WSNs, in which key management is an effective way to protect WSNs from various attacks. However, different types of messages exchanged in WSNs typically have different security requirements which cannot be satisfied by a single keying mechanism. In this study, a basic key management protocol is described for WSNs based on four kinds of keys, which can be derived from an initial master key, and an enhanced protocol is proposed based on Diffie-Hellman algorithm. The proposed scheme restricts the adverse security impact of a captured node to the rest of WSNs and meets the requirement of energy efficiency by supporting in-network processing. The master key protection, key revocation mechanism, and the authentication mechanism based on one-way hash function are, respectively, discussed. Finally, the performance of the proposed scheme is analyzed from the aspects of computational efficiency, storage requirement and communication cost, and its antiattack capability in protecting WSNs is discussed under various attack models. In this paper, promising research directions are also discussed.


Author(s):  
Ghassan Samara ◽  
Mohammad Hassan ◽  
Yahya Zayed

Wireless sensor networks (WSNs) has a practical ability to link a set of sensors to build a wireless network that can be accessed remotely; this technology has become increasingly popular in recent years. Wi-Fi-enabled sensor networks (WSNs) are used to gather information from the environment in which the network operates. Many obstacles prevent wireless sensor networks from being used in a wide range of fields. This includes maintaining network stability and extending network life. In a wireless network, sensors are the most essential component. Sensors are powered by a battery that has a finite amount of power. The battery is prone to power loss, and the sensor is therefore rendered inoperative as a result. In addition, the growing number of sensor nodes off-site affects the network's stability. The transmission and reception of information between the sensors and the base consumes the most energy in the sensor. An Intelligent Vice Cluster Head Selection Protocol is proposed in this study (IVC LEACH). In order to achieve the best performance with the least amount of energy consumption, the proposed hierarchical protocol relies on a fuzzy logic algorithm using four parameters to calculate the value of each node in the network and divides them into three hierarchical levels based on their value. This improves network efficiency and reliability while extending network life by 50 percent more than the original Low Energy Adaptive Clustering Hierarchy protocol. Keywords: Wireless Sensor Networks, Sensors, Communication Protocol, Fuzzy logic, Leach protocol.


ACTA IMEKO ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 37
Author(s):  
Lorenzo Ciani ◽  
Marcantonio Catelani ◽  
Alessandro Bartolini ◽  
Giulia Guidi ◽  
Gabriele Patrizi

<p class="Abstract"><span lang="EN-US">The introduction of Big Data and Internet of Things has allowed the rapid development of smart farming technologies. Usually, systems implemented in smart farms monitor environmental conditions and soil parameter to improve productivity, to optimize soil conservation, to save water and to limit plant diseases. Wireless sensor networks are a widespread solution because they allow to implement effective and efficient crop monitoring. At the same time, wireless sensor networks can cover large area, they can ensure fault tolerance and they can acquire large amount of data. Recent literature misses to consider the testing of the hardware performances of such systems according to the actual operating conditions. The effects of a harsh environment on the dynamic metrological performances of sensor nodes are not sufficiently investigated. Consequently, this work deals with the electrical design optimization of a sensor node by means of thermal test used to reproduce the actual operating conditions of the nodes. The results of the node characterization through thermal tests are used to improve the node’s design and consequently to achieve higher performances in harsh operative conditions.</span></p>


Sign in / Sign up

Export Citation Format

Share Document