scholarly journals Autonomous Agents as Tools for Modeling and Building Complex Control Systems that Operate in Dynamic and Unpredictable Environment

2013 ◽  
Vol 1 (2) ◽  
pp. 47-53
Author(s):  
Alketa Hyso ◽  
Eva Cipi

Complex control systems that operate in not entirely predictable environment have to deal with this environment in an autonomous manner using adaptability, the ability to predict environmental changes, and to maintain their integrity. Elements of the system must be able to find a new solution in a dynamic way. In this paper, we present the modeling of a traffic lights’ control system using a multivalent system. This is a large-scale distributed system, consisting of autonomous and rational traffic light agents, in which there is no centre imposing an outcome. Multiagent system brings another kind of organization of the distributed control. The information is distributed over the agents. The behavior of the other agents is incorporated into the making decision process of the agent. We apply different control algorithms in our multiagent simulation environment and show that using multiagent systems in dynamic and unpredictable environment the control will be adoptable.

2019 ◽  
Vol 256 ◽  
pp. 05002
Author(s):  
España Víctor ◽  
Chuchon Eddy ◽  
Caytuiro David ◽  
Iván Advincula ◽  
Mario Chauca

The following research document seeks to show an alternative to vehicle control systems using existing technologies to develop a system that is efficient and reliable. The creation and operation of a traffic light network will be presented, which will be located in an area where there is traffic congestion. The following network will reorganize, optimize, and measure the vehicular flow in real time. In some countries, intelligent traffic lights have been implemented, with which they have obtained satisfactory benefits by improving the vehicular flow of the places where these systems are located; for this reason we consider it necessary to use smart traffic lights in our country.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Vittorio Astarita ◽  
Vincenzo Pasquale Giofrè ◽  
Giuseppe Guido ◽  
Alessandro Vitale

This paper presents a simple concept which has not been, up to now, thoroughly explored in scientific research: the use of information coming from the network of Internet connected mobile devices (on vehicles) to regulate traffic light systems. Three large-scale changes are going to shape the future of transportation and could lead to the regulation of traffic signal system based on floating car data (FCD): (i) the implementation of Internet connected cars with global navigation satellite (GNSS) system receivers and the autonomous car revolution; (ii) the spreading of mobile cooperative Web 2.0 and the extension to connected vehicles; (iii) an increasing need for sustainability of transportation in terms of energy efficiency, traffic safety, and environmental issues. Up to now, the concept of floating car data (FCD) has only been extensively used to obtain traffic information and estimate traffic parameters. Traffic lights regulation based on FCD technology has not been fully researched since the implementation requires new ideas and algorithms. This paper intends to provide a seminal insight into the important issue of adaptive traffic light based on FCD by presenting ideas that can be useful to researchers and engineers in the long-term task of developing new algorithms and systems that may revolutionize the way traffic lights are regulated.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Yang Xu ◽  
Yulin Zhang ◽  
Ming Liu

Intelligent traffic control is an important issue of the modern transportation system. However, in large-scale urban transportation systems, traditional centralized coordination methods suffer bottlenecks in both communication and computation. Decentralized control is hard if there is very limited observation to the whole network as evidences to support joint traffic coordination decisions. In this paper, we proposed a novel decentralized, multiagent based approach for massive traffic lights coordination to promote the large-scale green transportation. Considering that only the traffic from the adjacent intersections may affect the state of a given intersection one time ahead, the key of our approach is using the observations of a local intersection and its neighbors as evidences to support the traffic light coordination decisions. Therefore, we can model the interactions as decentralized agents coordinating with a decision theoretical model. Within a local intersection, constraint optimizing agents are designed to efficiently search for joint activities of the lights. Since this approach involves only local intersection cooperation, it is well scalable and easily implemented with small communication overhead. In the last section, we present our software design on this approach and based on our simulation, this approach is feasible to a large urban transportation system.


Author(s):  
C. Özarpa ◽  
İ. Avcı ◽  
B. F. Kınacı ◽  
S. Arapoğlu ◽  
S. A. Kara

Abstract. There are regular developments and changes in cities. Developments in cities have affected transportation, and traffic control tools have changed. Traffic signs and traffic lights have been used to direct pedestrians and vehicles correctly. Traffic light control systems are used to ensure the safety of vehicles and pedestrians, increase the fluency in traffic, guide them in transportation, warn pedestrians and drivers, and regulate and control transportation disruptions. In order to facilitate people's lives, it is desired to control the traffic components autonomously with the developments in autonomous systems. Cyber threats arise due to the active use of the internet and signals or frequencies in the use of modules that will provide communication with traffic lights, traffic signs, and vehicles, which are traffic components at the inter-sections of many roads in the control of central systems. The study is limited to smart traffic lights, which are traffic components. If we examine the cyber-attacks, we can see that Malware Attacks, Buffer Overflow Attacks, DoS attacks, and Jamming Attacks can be made. Network-Based Intrusion Detection Systems and Host-Based Intrusion Detection Systems can be used to detect and stop Malware Attacks, Buffer Overflow Attacks, DoS attacks, and Jamming Attacks. Intrusion detection systems tell us whether the data poses a threat or does not pose after the data passing through the system is examined. In this way, system protection is ensured by controlling the data traffic in the system.


Author(s):  
Shota Masaki ◽  
Tsubasa Hirakawa ◽  
Takayoshi Yamashita ◽  
Hironobu Fujiyoshi

Traffic light recognition is an important task for automatic driving support systems. Conventional traffic light recognition techniques are categorized into model-based methods, which frequently suffer from environmental changes such as sunlight, and machine-learning-based methods, which have difficulty detecting distant and occluded traffic lights because they fail to represent features efficiently. In this work, we propose a method for recognizing distant traffic lights by utilizing a semantic segmentation for extracting traffic light regions from images and a convolutional neural network (CNN) for classifying the state of the extracted traffic lights. Since semantic segmentation classifies objects pixel by pixel in consideration of the surrounding information, it can successfully detect distant and occluded traffic lights. Experimental results show that the proposed semantic segmentation improves the detection accuracy for distant traffic lights and confirms the accuracy improvement of 12.8 % over the detection accuracy by object detection. In addition, our CNN-based classifier was able to identify the traffic light status more than 30 % more accurately than the color thresholding classification.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1099
Author(s):  
María José Rodríguez-Torres ◽  
Ainoa Morillas-España ◽  
José Luis Guzmán ◽  
Francisco Gabriel Acién

One of the most critical variables in microalgae-related processes is the pH; it directly determines the overall performance of the production system especially when coupling with wastewater treatment. In microalgae-related wastewater treatment processes, the adequacy of pH has a large impact on the microalgae/bacteria consortium already developing on these systems. For cost-saving reasons, the pH is usually controlled by classical On/Off control algorithms during the daytime period, typically with the dynamics of the system and disturbances not being considered in the design of the control system. This paper presents the modelling and pH control in open photobioreactors, both raceway and thin-layer, using advanced controllers. In both types of photobioreactors, a classic control was implemented and compared with a Proportional–Integral (PI) control, also the operation during only the daylight period and complete daily time was evaluated. Thus, three major variables already studied include (i) the type of reactors (thin-layers and raceways), (ii) the type of control algorithm (On/Off and PI), and (iii) the control period (during the daytime and throughout the daytime and nighttime). Results show that the pH was adequately controlled in both photobioreactors, although each type requires different control algorithms, the pH control being largely improved when using PI controllers, with the controllers allowing us to reduce the total costs of the process with the reduction of CO2 injections. Moreover, the control during the complete daily cycle (including night) not only not increases the amount of CO2 to be injected, otherwise reducing it, but also improves the overall performance of the production process. Optimal pH control systems here developed are highly useful to develop robust large-scale microalgae-related wastewater treatment processes.


Author(s):  
Takeshi Mizunoya ◽  
Noriko Nozaki ◽  
Rajeev Kumar Singh

AbstractIn the early 2000s, Japan instituted the Great Heisei Consolidation, a national strategy to promote large-scale municipal mergers. This study analyzes the impact that this strategy could have on watershed management. We select the Lake Kasumigaura Basin, the second largest lake in Japan, for the case study and construct a dynamic expanded input–output model to simulate the ecological system around the Lake, the socio-environmental changes over the period, and their mutual dependency for the period 2012–2020. In the model, we regulate and control the following water pollutants: total nitrogen, total phosphorus, and chemical oxygen demand. The results show that a trade-off between economic activity and the environment can be avoided within a specific range of pollution reduction, given that the prefectural government implements optimal water environment policies, assuming that other factors constraining economic growth exist. Additionally, municipal mergers are found to significantly reduce the budget required to improve the water environment, but merger budget efficiency varies nonlinearly with the reduction rate. Furthermore, despite the increase in financial efficiency from the merger, the efficiency of installing domestic wastewater treatment systems decreases drastically beyond a certain pollution reduction level and eventually reaches a limit. Further reductions require direct regulatory instruments in addition to economic policies, along with limiting the output of each industry. Most studies on municipal mergers apply a political, administrative, or financial perspective; few evaluate the quantitative impact of municipal mergers on the environment and environmental policy implications. This study addresses these gaps.


2020 ◽  
Vol 53 (2) ◽  
pp. 2634-2641
Author(s):  
Vinicius Lima ◽  
Mark Eisen ◽  
Konstatinos Gatsis ◽  
Alejandro Ribeiro

Sign in / Sign up

Export Citation Format

Share Document