scholarly journals Novel Solid Base Catalyst Derived from Drinking Water Defluoridation for Biodiesel Synthesis

2017 ◽  
Vol 61 (4) ◽  
pp. 288 ◽  
Author(s):  
Jharna Gupta ◽  
Madhu Agarwal ◽  
Ajay Kumar Dalai

In this study, a novel heterogeneous catalyst was synthesized from drinking water treatment sludge obtained during defluoridation in biodiesel production by transesterification. More specifically, the sludge was converted into an effective catalyst by calcination at 950 ºC for 3 h. The catalyst was characterized using X-ray diffraction, Fourier transform infrared spectroscopy, Thermogravimetric analysis, Scanning electron microscopy, Hammett titration method, and ion exchange method. The catalyst had a basicity of 12.57 mmol/g and a basic strength of 9.8 < H <17.2. It showed good catalytic activity in biodiesel synthesis. The maximum biodiesel yield obtained was 89% for the following reaction conditions: catalyst loading of 4 wt%, a reaction temperature of 65 ºC, the methanol-to-oil molar ratio of 12:1, and reaction time of 3 h. Thus, it was found that harmful waste can be used as an effective solid base heterogeneous catalyst.

2020 ◽  
Vol 21 (1) ◽  
pp. 88
Author(s):  
Alwi Gery Agustan Siregar ◽  
Renita Manurung ◽  
Taslim Taslim

In this study, silica derived from corncobs impregnated with sodium hydroxide to obtain sodium silicate was calcined, prepared, and employed as a solid base catalyst for the conversion of oils to biodiesel. The catalyst was characterized by X-Ray Diffraction (XRD), Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope Energy Dispersive X-Ray Spectroscopy (SEM-EDS), and Brunauer-Emmet-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods. Gas Chromatography-Mass Spectrometry (GC-MS) was used to characterize the biodiesel products. The optimum catalyst conditions were calcination temperature of 400 °C for 2 h, catalyst loading of 2%, and methanol: oil molar ratio of 12:1 at 60 °C for 60 min, that resulted in a yield of 79.49%. The final product conforms to the selected biodiesel fuel properties of European standard (EN14214) specifications. Calcined corncob-derived sodium silicate showed high potential for use as a low-cost, high-performance, simple-to-prepare solid catalyst for biodiesel synthesis.


2013 ◽  
Vol 834-836 ◽  
pp. 550-554 ◽  
Author(s):  
Warakom Suwanthai ◽  
Vittaya Punsuvon ◽  
Pilanee Vaithanomsat

In this research, calcium methoxide was synthesized as solid base catalyst from quick lime for biodiesel production. The catalyst was further characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), attenuated total reflection fourier transform (ATR-FTIR) and Energy-dispersive X-ray spectroscopies (EDX) to evaluate its performance. The transesterification of refined palm oil using calcium methoxide and the process parameters affecting the fatty acid methyl ester (FAME) content such as catalyst concentration, methanol:oil molar ratio and reaction time were investigated. The results showed that the FAME content at 97% was achieved within 3 h using 3 %wt catalyst loading, 12:1 methanol:oil molar ratio and 65 °C reaction temperature. The result of FAME suggested calcium methoxide was the promising solid catalyst for substitution of the conventional liquid catalyst.


2010 ◽  
Vol 148-149 ◽  
pp. 794-798 ◽  
Author(s):  
Xiao Hua Liu ◽  
Hai Xin Bai ◽  
Dong Jie Zhu ◽  
Geng Cao

In this paper, calcined river-snail shell was used as a novel solid base catalyst in the transesterification of soybean oil with methanol for biodiesel production. The calcined river-snail shell was characterized using field emission scanning electron microscope and X-ray diffraction. Effects of transesterification process variables were investigated. The results indicated that river-snail shell calcined at 800 °C catalyzed the transesterification of soybean oil for biodiesel with a yield over 98 % under the conditions including catalyst of 3.0% (w/w), a molar ratio of methanol/oil of 9:1, reaction time of 3 h, and reaction temperature of 65 °C. As a low-cost green catalyst, calcined river-snail shell could not only minimize the environmental wastes resulted from the solid shell, but also reduce the production costs of biodiesel.


2017 ◽  
Vol 58 (4) ◽  
Author(s):  
Sathgatta Zaheeruddin Mohamed Shamshuddin ◽  
Venkatesh -- ◽  
Manjunatha Shyamsundar ◽  
Vanagoor Thammannigowda Vasanth

This study investigates the use of CeO<sub>2</sub>, ZrO<sub>2</sub>, MgO and CeO<sub>2</sub>-ZrO<sub>2</sub>, CeO<sub>2</sub>-MgO, CeO<sub>2</sub>-ZrO<sub>2</sub>-MgO mixed oxides as solid base catalysts for the transesterification of Pongamia Pinnata oil with methanol to produce biodiesel.  SO<sub>4</sub><sup>2-</sup>/CeO<sub>2 </sub>and SO<sub>4</sub><sup>2-</sup>/CeO<sub>2</sub>-ZrO<sub>2</sub> were also prepared and used as solid acid catalysts for esterification of Pongamia pinnata oil (P-oil) to reduce the % of free fatty acid (FFA) in P-oil. These oxide catalysts were prepared by an incipient wetness impregnation method and characterized by techniques such as NH<sub>3</sub>-TPD for surface acidity, CO<sub>2</sub>-TPD for surface basicity and powder X-ray diffraction for crystalinity.  The effect of nature of the catalyst, methanol to P-oil molar ratio and reaction time in esterification as well as in transesterification was investigated.  The catalytic materials were reactivated &amp; reused for five reaction cycles and the results showed that the ceria based catalysts have reasonably good reusability both in esterification and transesterification reaction.  The test results also revealed that the CeO<sub>2</sub>-ZrO<sub>2</sub> modified with MgO could have potential for use in the large scale biodiesel production.


2012 ◽  
Vol 622-623 ◽  
pp. 1204-1208
Author(s):  
Amar P. Pandhare ◽  
Atul S. Padalkar

The awareness on biodiesel in developing countries in the recent times has been increased. Several activities have been picked up for its production especially with a view to boost the rural economy. In the present investigation biodiesel was prepared from jatropha curcas seed oil (non edible oil). Before exploiting any plant for industrial application, it is imperative to have complete information about its biology, chemistry, and all other applications so that the potential of plant could be utilized maximally. Biodiesel was prepared by transesterification process of jatropha oil with methanol in heterogeneous system, using heterogeneous catalyst. The heterogeneous catalysts are environment friendly and render the process simplified. Calcination process was followed by the dependence of the conversion of jatropha oil on the reaction variables such as the catalyst loading; the molar ratio of the methanol to oil, reaction temperature agitation speed and the reaction time was studied. The conversion was over 89% at a reaction temperature of 70oC and molar ratio 12:1. Finally, Jatropha oil methyl esters was characterized to test its properties as fuels in diesel engines, such as viscosity, flash point, cetane number. Results showed that biodiesel obtained under the optimum conditions is an excellent substitute for fossil fuels.


2012 ◽  
Vol 581-582 ◽  
pp. 283-286
Author(s):  
Xue Li ◽  
Zi Yuan Zhou ◽  
Li Wei Zhu ◽  
Jian Xin Jiang

CaMgZn mixed oxide (CMZ) catalysts were modified by addition of lanthanum nitrate, and the use of modified catalysts (CMZL) for biodiesel synthesis were investigated. The conditions of biodiesel production with modified catalysts were optimized. Using optimized conditions, including lanthanum nitrate addition of 3wt.%, catalyst amount of 5wt.%, reaction temperature of 50°C, methanol to oil molar ratio of 15:1 and reaction time of 1h, the glycerol yield of 86.80% catalyzed by CMZL could be attained, which was higher compared with the CMZ catalyzed process of 82.94%. Brunauer–Emmett–Teller (BET), X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM) were used to compare the modified CMZL catalyst with the CMZ bare catalyst. The results indicated that the lanthanum modified catalysts (CMZL) have excellent surface property. The modified catalysts could be suitable for commercial application.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3714
Author(s):  
Kusmiyati Kusmiyati ◽  
Didik Prasetyoko ◽  
Siwi Murwani ◽  
Muthiah Nur Fadhilah ◽  
Titie Prapti Oetami ◽  
...  

This research paper describes the synthesis of a heterogeneous catalyst (Potassium hydroxide (KOH)-impregnated eggshell) from waste chicken eggshell using the wet impregnation technique. In this experiment, the catalyst was derived from eggshell that was calcined at 800 °C for 5 h. It was impregnated with KOH at various KOH concentrations (10%, 15%, 20%, and 25%). The best catalyst was obtained by eggshell impregnated with 20% KOH concentration. This result was supported by the analysis of the catalyst characterization using Fourier-transform infrared spectrometry (FT-IR), which showed that the catalyst contained CaCO3 and CaOH groups. X-ray fluorescence analysis (XRF) was also used to analyze the types of mineral contained in the catalyst, including calcium, potassium, sulfur, and other impurities. It revealed that the optimum minerals were found in the KOH-impregnated eggshell (20%) catalyst of 94.42% calcium, 5.06% potassium, and a small amount of other impurities. These optimum minerals serve as active sites to increase the biodiesel yield. Scanning electron microscopy (SEM) showed that the catalyst samples appear as small, spherical, homogenous, and solid particles. The catalytic activity was investigated by the transesterification of Reutalism trisperma oil in various types of catalyst (KOH-impregnated eggshell, eggshell, and KOH-impregnated CaO), percentages of catalyst loading (weight of 1%, 3%, 5%, 7%, and 10%) and molar ratios (methanol to oil of 6:1, 8:1, 10:1, 12:1, and 15:1) for 60 min at 60 °C. The result indicated the optimum catalyst loading was 5 wt% with an 84.57% biodiesel yield. While the best molar ratio was 12:1 (methanol:oil) with a 97.95% biodiesel yield. The optimum condition was gained using a molar ratio of 12:1, 5 wt% catalyst loading, and KOH-impregnated eggshell with a 94% biodiesel yield.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Leandro Marques Correia ◽  
Juan Antonio Cecilia ◽  
Enrique Rodríguez-Castellón ◽  
Célio Loureiro Cavalcante ◽  
Rodrigo Silveira Vieira

The CaO solid derived from natural quail eggshell was calcined and employed as catalyst to produce biodiesel via transesterification of sunflower oil. The natural quail eggshell was calcined at 900°C for 3 h, in order to modify the calcium carbonate present in its structure in CaO, the activity phase of the catalyst. Both precursor and catalyst were characterized using Hammett indicators method, X-ray fluorescence (XRF), X-ray diffraction (XRD), thermogravimetric analysis (TG/DTG), CO2temperature-programmed desorption (CO2-TPD), X-ray photoelectronic spectroscopy (XPS), Fourier infrared spectroscopy (FTIR), scanning electron microscopy (SEM), N2adsorption-desorption at −196°C, and distribution particle size. The maximum biodiesel production was of 99.00 ± 0.02 wt.% obtained in the following transesterification reaction conditions:XMR(sunflower oil/methanol molar ratio of 1 : 10.5 mol : mol),XCAT(catalyst loading of 2 wt.%),XTIME(reaction time of 2 h), stirring rate of 1000 rpm, and temperature of 60°C.


2019 ◽  
Vol 8 (1) ◽  
pp. 235-244 ◽  
Author(s):  
Luciene da Silva Castro ◽  
Audrei Giménez Barañano ◽  
Christiano Jorge Gomes Pinheiro ◽  
Luciano Menini ◽  
Patrícia Fontes Pinheiro

Abstract Biodiesel is a fuel from vegetable oil or animal fat, and is a promising substitute for petroleum-derived diesel. Transesterification is the most widely used method in biodiesel production. Eggshell is rich in calcium carbonate (CaCO3), and when it is subjected to heat treatment it results in calcium oxide (CaO). CaO from eggshells was prepared at different calcination temperatures, and characterized by X-ray diffraction, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The obtained CaO was used as a catalyst. All catalysts showed good stability and excellent morphology for biodiesel synthesis. Catalytic activity was evaluated by the methyl transesterification reaction of cotton oil for 3 h, 9:1 methanol:oil molar ratio, 3 wt% (catalyst/oil weight ratio) catalyst and 60°C. Biodiesels showed an ester content of 97.83%, 97.23% and 98.08%, obtained from calcined eggshell at 800°C, 900°C and 1000°C, respectively. Biodiesel quality was affected by the acidity of the cation exchange resin. The kinematic viscosity of biodiesel was in accordance with specification, except for the biodiesel obtained from the calcined catalyst at 1000°C. The CaO from eggshells obtained at different calcination temperatures is promising for biodiesel synthesis.


2018 ◽  
Vol 17 (1) ◽  
pp. 18
Author(s):  
S. N. Rabelo ◽  
L. S. Oliveira ◽  
A. S. França

Biodiesel was successful produced in a microwave irradiation reactor using homogeneous and heterogeneous catalysis. The biodiesel was production by the trasesterification reaction of soybean oil using metanol. Sodium methylate (30% solution in metanol) was used for the homogeneous catalyst and the heterogeneous catalyst was developed using wasted eggshells. The eggshells were calcined and tested pure and doped with potassium hydroxide in 10, 30 and 50% of weight. The power and temperature of the microwave were kept constant in every reaction being 800W and 200º Celsius, respectively. The reaction time was significantly reduced using microwave compared to the conventional process. In only one minute of reaction, the methyl ester (FAME) conversion obtained was 98.9% with the homogeneous catalyst and within 15 minutes, the heterogeneous catalysis accomplished 100%. For heterogeneous catalyst, the best results were acquired when the doped catalyst contained 50% of KOH. The results indicated that the eggshells treated with KOH has a great potential to be used for microwave-assisted transesterification reactions of oils with mild operations conditions: molar ratio oil/alcochol 1:6 and just 5% of catalyst. In addition, the heterogenous catalyst was recovered and reused in other reactions with a relatively satisfying results. The physico-chemical properties of the catalysts were characterized by X-ray diffraction and thermogravimectric analysis.


Sign in / Sign up

Export Citation Format

Share Document