scholarly journals Response Surface Optimization of Biodiesel Production from Nyamplung (Calophyllum inophyllum) Oil Enhanced by Microwave and Ionic liquid + NaOH Catalyst

Author(s):  
Prima Astuti Handayani ◽  
Abdullah Abdullah ◽  
Hadiyanto Hadiyanto

Nyamplung (Calophyllum inophyllum) plant is a highly potential raw material in the biodiesel production, the oil in the seeds is 50-73 %. The microwave has been intensively applied to reduce the processing time while ionic liquid also was used as an acceleration agent in the biodiesel production. The optimum process condition of the biodiesel production using Ionic liquid + NaOH as a catalyst mixture and assisted with microwave heating system were determined in this study. Response Surface Methodology (RSM) was used to optimize three transesterification reaction variables: the catalyst concentration of (0.5-1.5 %wt), the reaction temperature of 60-80 oC, and methanol to oil molar ratio of 6:1–12:1, while the transesterification time was set constant at 6 minutes. The optimization showed that the maximum biodiesel yield can be obtained was 95.8 % at the catalyst concentration of 1.2 %wt, the reaction temperature of 71.3 oC, and methanol to oil molar ratio of 10.8 mole/mole.

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2566 ◽  
Author(s):  
Mohammad Anwar ◽  
Mohammad Rasul ◽  
Nanjappa Ashwath ◽  
Md Rahman

In this study, the production process of second-generation biodiesel from Australian native stone fruit have been optimised using response surface methodology via an alkali catalysed transesterification process. This process optimisation was performed varying three factors, each at three different levels. Methanol: oil molar ratio, catalyst concentration (wt %) and reaction temperature were the input factors in the optimisation process, while biodiesel yield was the key model output. Both 3D surface plots and 2D contour plots were developed using MINITAB 18 to predict optimum biodiesel yield. Gas chromatography (GC) and Fourier transform infrared (FTIR) analysis of the resulting biodiesel was also done for biodiesel characterisation. To predict biodiesel yield a quadratic model was created and it showed an R2 of 0.98 indicating the satisfactory performance of the model. Maximum biodiesel yield of 95.8% was obtained at a methanol: oil molar ratio of 6:1, KOH catalyst concentration of 0.5 wt % and a reaction temperature of 55 °C. At these reaction conditions, the predicted biodiesel yield was 95.9%. These results demonstrate reliable prediction of the transesterification process by Response surface methodology (RSM). The results also show that the properties of the synthesised Australian native stone fruit biodiesel satisfactorily meet the ASTM D6751 and EN14214 standards. In addition, the fuel properties of Australian native stone fruit biodiesel were found to be similar to those of conventional diesel fuel. Thus, it can be said that Australian native stone fruit seed oil could be used as a potential second-generation biodiesel source as well as an alternative fuel in diesel engines.


2018 ◽  
Vol 7 (1) ◽  
pp. 59-63
Author(s):  
Prima Astuti Handayani ◽  
Ria Wulansarie ◽  
Paisal Husaen ◽  
Isna Mardya Ulfayanti

Nyamplung (Calophyllum inophyllum) oil contains high free fatty acid (FFA) that is 21.62%. Nyamplung oil can be utilized as raw material for biodiesel production. Microwave is a method of heating that is used intensively to speed up the production process. Ionic liquid has high catalytic activity, high selectivity, can be recycled and environmentally friendly. This study learned about the esterification of nyamplung oil with ionic liquid 1-Butyl-3-methylimidazolium hydrogen sulphate (BMIMHSO4) as catalyst and microwave-assisted. The purpose of this study is to obtain optimum condition of esterification process, with free fatty acid concentration (FFA) <2%. This study uses raw materials of nyamplung oil, methanol and BMIMHSO4 as catalyst. Equipment used in study was batch reactor equipped with temperature sensor with microwave heating system. The research variables studied were reaction temperature (50-70oC), molar ratio oil to methanol (1:30-1:60) and catalyst concentration (5-17.5%). The result of esterification reaction was analyzed by FFA (free fatty acid) content using titration analysis. The best free fatty acid (FFA) result was 1.92%, with molar ratio of oil to methanol was 1:40, catalyst concentration was 15% by weight and at 60oC for 120 min. The esterification of  nyamplung oil meets the criteria as biodiesel feedstock.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Nichaonn Chumuang ◽  
Vittaya Punsuvon

The present study was performed to optimize a heterogeneous calcium methoxide (Ca(OCH3)2) catalyzed transesterification process assisted with tetrahydrofuran (THF) as a cosolvent for biodiesel production from waste cooking oil. Response surface methodology (RSM) with a 5-level-4-factor central composite design was applied to investigate the effect of experimental factors on the percentage of fatty acid methyl ester (FAME) conversion. A quadratic model with an analysis of variance obtained from the RSM is suggested for the prediction of FAME conversion and reveals that 99.43% of the observed variation is explained by the model. The optimum conditions obtained from the RSM were 2.83 wt% of catalyst concentration, 11.6 : 1 methanol-to-oil molar ratio, 100.14 min of reaction time, and 8.65% v/v of THF in methanol concentration. Under these conditions, the properties of the produced biodiesel satisfied the standard requirement. THF as cosolvent successfully decreased the catalyst concentration, methanol-to-oil molar ratio, and reaction time when compared with biodiesel production without cosolvent. The results are encouraging for the application of Ca(OCH3)2 assisted with THF as a cosolvent for environmentally friendly and sustainable biodiesel production.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
O. Kuipa ◽  
T. S. Marwizi ◽  
P. K. Kuipa

AbstractThe production of biodiesel from dairy effluent scum using calcined egg shell as the transesterification catalyst has been explored. Eggshell powder was calcined at 900 °C for 3 h and used as catalyst. The influence of methanol-oil molar ratio, catalyst concentration and reaction temperature were studied using Response Surface Methodology employing a Central Composite Rotatable Design. An empirical model that relates the yield of biodiesel to the studied factors was obtained. The model has high statistical significance at 95% confidence interval with R2 and adjusted R2 values of 96.31% and 95.75% respectively. Results showed that among the three studied factors, the methanol-oil molar ratio had the greatest contribution to the yield of dairy effluent scum derived biodiesel followed by reaction temperature and finally, the catalyst concentration. Significant interaction effects were also present between methanol-oil ratio and catalyst, catalyst and reaction temperature and methanol-oil ratio and reaction temperature. Accordingly, the optimal variable settings were 14.355:1 methanol-oil molar ratio, 3.09% catalyst loading by weight of pre-treated dairy scum oil and 55.20°C reaction temperature; with a corresponding yield of 92.72%.


2021 ◽  
Vol 29 (4) ◽  
Author(s):  
Ratna Dewi Kusumaningtyas ◽  
Haniif Prasetiawan ◽  
Radenrara Dewi Artanti Putri ◽  
Bayu Triwibowo ◽  
Siti Choirunisa Furi Kurnita ◽  
...  

Nyamplung seed (Calophyllum inophyllum L.) oil is a prospective non-edible vegetable oil as biodiesel feedstock. However, it cannot be directly used in the alkaline catalysed transesterification reaction since it contains high free fatty acid (FFA) of 19.17%. The FFA content above 2% will cause saponification reaction, reducing the biodiesel yield. In this work, FFA removal was performed using sulfuric acid catalysed esterification to meet the maximum FFA amount of 2%. Experimental work and response surface methodology (RSM) analysis were conducted. The reaction was conducted at the fixed molar ratio of nyamplung seed oil and methanol of 1:30 and the reaction times of 120 minutes. The catalyst concentration and the reaction temperature were varied. The highest reaction conversion was 78.18%, and the FFA concentration was decreased to 4.01% at the temperature of 60℃ and reaction time of 120 minutes. The polynomial model analysis on RSM demonstrated that the quadratic model was the most suitable FFA conversion optimisation. The RSM analysis exhibited the optimum FFA conversion of 78.27% and the FFA content of 4%, attained at the reaction temperature, catalyst concentration, and reaction time of 59.09℃, 1.98% g/g nyamplung seed oil, and 119.95 minutes, respectively. Extrapolation using RSM predicted that the targeted FFA content of 2% could be obtained at the temperature, catalyst concentration, and reaction time of 58.97℃, 3%, and 194.9 minutes, respectively, with a fixed molar ratio of oil to methanol of 1:30. The results disclosed that RSM is an appropriate statistical method for optimising the process variable in the esterification reaction to obtain the targeted value of FFA.


2009 ◽  
Vol 12 (13) ◽  
pp. 69-76
Author(s):  
Huong Thi Thanh Le ◽  
Tan Viet Le ◽  
Tan Minh Phan ◽  
Hoa Thi Viet Tran

In this study, biodiesel was produced from fat of tra catfish by methanolysis reaction with KOH/y-A12O3 heterogenous catalyst. This research was carried out using response surface methodology (RSM) based on four-variable central composite design (CCD) with a = 1,54671. The transesterification process variables and their investigated ranges were methanol/fat molar ratio (X1: 7/1 - 9/1), catalyst concentration (X2: 5%-7%), reaction time (X3: 60 min - 120 min), and reaction temperature (X4: 55 °C - 65 °C). The result show the biodiesel yield could be reach up to 92,8 % using the following optimized reaction condition: molar ratio of methanol/fat at 8,26/1, catalyst concentration of 5,79 %, reaction time of 96 min, and reaction temperature at 59,6 °C.


2021 ◽  
Author(s):  
Vaishali Mittal ◽  
Uttam Kumar Ghosh

Abstract Production of biodiesel from microalgae is gaining popularity since it does not compromise food security or the global economy. This article reports biodiesel production with Spirulina microalgae through nanocatalytic transesterification process. The nanocatalyst calcium methoxide Ca(OCH3)2 was synthesized using wet impregnation method and utilized to carry out the transesterification process. The nanocatalyst was characterized to evaluate its structural and spectral characteristics using different characterization techniques such as Thermogravimetric analysis (TGA), X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and Brunaeur-Emmett-Teller(BET) measurement for surface area. The result demonstrates that calcium methoxide Ca(OCH3)2 possesses a high catalytic activity compared to a heterogeneous catalyst such as calcium oxide (CaO). The impact of several process parameters such as reaction temperature, the molar ratio of methanol to oil, catalyst concentration, and reaction time used in the transesterification process was optimized by employing central composite design(CCD) based response surface methodology(RSM). The polynomial regression equation of second order was obtained for methyl esters. The model projected a 99% fatty acid methyl esters (FAME) yield for optimal process parameters of reaction time 3hrs,3 wt.% of Ca(OCH3)2 catalyst loading, 80°C reaction temperature, and 30:1 methanol to oil molar ratio.


2019 ◽  
Vol 13 (4) ◽  
pp. 464-474 ◽  
Author(s):  
Youzhou Jiao ◽  
Yahe Mei ◽  
Le Wang ◽  
Jiaao Liu ◽  
Zhiping Zhang ◽  
...  

The innocuous utilization of diseased swine carcasses is a key issue in reducing environmental pollution and ensuring safety in animal husbandry. In this study, by using fat from diseased swine carcasses as raw materials, response surface experiments were conducted to investigate the influences of reaction time, catalyst concentration, reaction temperature, and methanol/oil molar ratio on the biodiesel purity and the optimum conditions for biodiesel production were determined. Furthermore, three-dimensional (3D) ultrasound assistance was adopted and kinetic analysis was performed. The results show that the influencing factors on biodiesel purity, in descending order, were determined to be reaction temperature > catalyst concentration > reaction time > methanol/oil molar ratio. Moreover, the maximum biodiesel purity was 93.7% under the following optimal conditions: catalyst concentration of 5.0 wt%; reaction temperature of 68 °C; methanol/oil molar ratio of 10:1; reaction time of 37 h. When 3D ultrasound assistance was adopted, the maximum biodiesel purity of 98.1% was obtained for the reaction process of 8 h under the ultrasound power and frequency of 500 W and 20 kHz, respectively. And the esterification reaction time was significantly reduced, compared to without ultrasound assistance. The results of kinetic analysis demonstrate that the reaction rate constants of the ultrasound group were 4.45–5.52 times greater than that of the control group. And the activation energy for the ultrasound group was 25.58 kJ/mol, which is 22.81% lower than that of the control group. This study will help to conduct large-batch biodiesel production from diseased swine carcasses in the future.


2020 ◽  
Vol 9 (1) ◽  
pp. 119-123
Author(s):  
H Hadiyanto ◽  
Apsari Puspita Aini ◽  
Widayat Widayat ◽  
Kusmiyati Kusmiyati ◽  
Arief Budiman ◽  
...  

Biodiesel can be produced from various vegetable oils and animal fat. Abundant sources of vegetable oil in Indonesia, such as Calophyllum inophyllum, Ricinus communis, palm oil, and waste cooking oil, were used as raw materials. Multi-feedstock biodiesel was used to increase the flexibility operation of biodiesel production. This study was conducted to determine the effect of a combination of vegetable oils on biodiesel characteristics. Degumming and two steps of esterification were applied for high free fatty acid feedstock before trans-esterification in combination with other vegetable oils. Potassium hydroxide was used as a homogenous catalyst and methanol as another raw material. The acid value of C. inophyllum decreased from 54 mg KOH/gr oil to 2.15 mg KOH/gr oil after two steps of esterification. Biodiesel yield from multi-feedstock was 87.926% with a methanol-to-oil molar ratio of 6:1, temperature of 60 ℃, and catalyst of 1%wt. ©2020. CBIORE-IJRED. All rights reserved


2019 ◽  
Vol 9 (4) ◽  
pp. 269-280 ◽  
Author(s):  
Priyanka Bharti ◽  
Bhaskar Singh ◽  
R. K. Dey

Abstract Uses of nanocatalysts have become more useful in optimizing catalytic reactions. They are known to enhance the rate of reaction by offering a greater number of active sites by possessing a high surface-to-volume ratio. In the present work, calcium oxide nanocatalysts were synthesized through the sol–gel method. The particle size of the nanocatalyst prepared ranged up to 8 nm. Soybean oil was used as the raw material for the synthesis of biodiesel. The synthesized nano-CaO was characterized through scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and BET (Brunauer–Emmett–Teller). Average BET surface area analysis of the nanocatalyst was calculated to be 67.781 m2/g and pore diameter was 3.302 nm. Nano-CaO catalyst was used to synthesize biodiesel and optimize the reaction variables through optimization processes to achieve a high yield of biodiesel. The reaction variables that were optimized were catalyst amount, oil to methanol molar ratio and reaction temperature. Upon optimization, the conversion of biodiesel was found to be 97.61%. The optimized value of the reaction variables was: catalyst amount of 3.675 wt% with respect to oil, molar ratio (alcohol to oil) of 11:1, and reaction temperature of 60 °C for 2 h. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document