scholarly journals Process optimization of biodiesel production catalyzed by CaO nanocatalyst using response surface methodology

2019 ◽  
Vol 9 (4) ◽  
pp. 269-280 ◽  
Author(s):  
Priyanka Bharti ◽  
Bhaskar Singh ◽  
R. K. Dey

Abstract Uses of nanocatalysts have become more useful in optimizing catalytic reactions. They are known to enhance the rate of reaction by offering a greater number of active sites by possessing a high surface-to-volume ratio. In the present work, calcium oxide nanocatalysts were synthesized through the sol–gel method. The particle size of the nanocatalyst prepared ranged up to 8 nm. Soybean oil was used as the raw material for the synthesis of biodiesel. The synthesized nano-CaO was characterized through scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and BET (Brunauer–Emmett–Teller). Average BET surface area analysis of the nanocatalyst was calculated to be 67.781 m2/g and pore diameter was 3.302 nm. Nano-CaO catalyst was used to synthesize biodiesel and optimize the reaction variables through optimization processes to achieve a high yield of biodiesel. The reaction variables that were optimized were catalyst amount, oil to methanol molar ratio and reaction temperature. Upon optimization, the conversion of biodiesel was found to be 97.61%. The optimized value of the reaction variables was: catalyst amount of 3.675 wt% with respect to oil, molar ratio (alcohol to oil) of 11:1, and reaction temperature of 60 °C for 2 h. Graphic abstract

2015 ◽  
Vol 1113 ◽  
pp. 518-522 ◽  
Author(s):  
Mardhiah Mohamad ◽  
Norzita Ngadi ◽  
Nurul Saadiah Lani

Transesterification method was carried out in biodiesel production from cooking oil (CO). Calcium oxide (CaO) was selected as the best catalyst. This study investigated the effects of percentage conversion of oil to biodiesel from methanol to oil molar ratio and catalyst amount. Brunauer, Emmett and Teller (BET) test method was used to analyze the surface area. The results obtained showed that using 200°C calcined CaO catalyst, 76.67 % biodiesel was successfully converted from oil. This indicates that the cooking oil (CO) has potential to become a future source of biodiesel. 0.5 w/w% catalyst dosages, 3:5 oil to methanol molar ratio and 65°C reaction temperature are the best condition for the biodiesel conversion from oil. This study also shows that conversion of cooking oil is significantly affected by methanol to oil molar ratio and catalyst amount.


2011 ◽  
Vol 17 (2) ◽  
pp. 117-124 ◽  
Author(s):  
B. Singh ◽  
Faizal Bux ◽  
Y.C. Sharma

Biodiesel was developed by transesterification of Madhuca indica oil by homogeneous and heterogeneous catalysis. KOH and CaO were taken as homogeneous and heterogeneous catalyst respectively. It was found that the homogeneous catalyst (KOH) took 1.0 h of reaction time, 6:1 methanol to oil molar ratio, 0.75 wt% of catalyst amount, 55?0.5?C reaction temperature for completion of the reaction. The heterogeneous catalyst (CaO) was found to give optimum yield in 2.5 h of reaction time at 8:1 methanol to oil molar ratio, 2.5 wt% of catalyst amount, at 65?0.5?C. A high yield (95-97%) and conversion (>96.5%) was obtained from both the catalysts. CaO was found to leach to some extent in the reactants and a biodiesel conversion of 27-28% was observed as a result of leaching.


Author(s):  
Prima Astuti Handayani ◽  
Abdullah Abdullah ◽  
Hadiyanto Hadiyanto

Nyamplung (Calophyllum inophyllum) plant is a highly potential raw material in the biodiesel production, the oil in the seeds is 50-73 %. The microwave has been intensively applied to reduce the processing time while ionic liquid also was used as an acceleration agent in the biodiesel production. The optimum process condition of the biodiesel production using Ionic liquid + NaOH as a catalyst mixture and assisted with microwave heating system were determined in this study. Response Surface Methodology (RSM) was used to optimize three transesterification reaction variables: the catalyst concentration of (0.5-1.5 %wt), the reaction temperature of 60-80 oC, and methanol to oil molar ratio of 6:1–12:1, while the transesterification time was set constant at 6 minutes. The optimization showed that the maximum biodiesel yield can be obtained was 95.8 % at the catalyst concentration of 1.2 %wt, the reaction temperature of 71.3 oC, and methanol to oil molar ratio of 10.8 mole/mole.


2014 ◽  
Vol 521 ◽  
pp. 621-625 ◽  
Author(s):  
Yi Gang Wang ◽  
Xiao An Nie ◽  
Zhen Xing Liu

The preparation of biodiesel from Styrax Tonkinensis catalyzed by solid acid S2O82-/ZrO2-TiO2-Fe3O4 at an autoclave was studied in this paper. The magnetic catalysts were characterized by XRD, which explained the high catalytic effect. At the same time, the recovery rate and usage count of catalysts were also studied. And the results showed that a high yield of transesterification can be obtained in a closed autoclave at the condition of catalyst amount 5 %, reaction time 1.5 h, reaction temperature 373K and methanol and oil molar ratio 10:1. The results also showed that the catalysts were still with a higher catalytic efficiency when the catalysts were calcinated after the forth usage.


2019 ◽  
Author(s):  
Chem Int

Biodiesel produced by transesterification process from vegetable oils or animal fats is viewed as a promising renewable energy source. Now a day’s diminishing of petroleum reserves in the ground and increasing environmental pollution prevention and regulations have made searching for renewable oxygenated energy sources from biomasses. Biodiesel is non-toxic, renewable, biodegradable, environmentally benign, energy efficient and diesel substituent fuel used in diesel engine which contributes minimal amount of global warming gases such as CO, CO2, SO2, NOX, unburned hydrocarbons, and particulate matters. The chemical composition of the biodiesel was examined by help of GC-MS and five fatty acid methyl esters such as methyl palmitate, methyl stearate, methyl oleate, methyl linoleate and methyl linoleneate were identified. The variables that affect the amount of biodiesel such as methanol/oil molar ratio, mass weight of catalyst and temperature were studied. In addition to this the physicochemical properties of the biodiesel such as (density, kinematic viscosity, iodine value high heating value, flash point, acidic value, saponification value, carbon residue, peroxide value and ester content) were determined and its corresponding values were 87 Kg/m3, 5.63 Mm2/s, 39.56 g I/100g oil, 42.22 MJ/Kg, 132oC, 0.12 mgKOH/g, 209.72 mgKOH/g, 0.04%wt, 12.63 meq/kg, and 92.67 wt% respectively. The results of the present study showed that all physicochemical properties lie within the ASTM and EN biodiesel standards. Therefore, mango seed oil methyl ester could be used as an alternative to diesel engine.


2019 ◽  
Vol 73 (6) ◽  
pp. 351-362 ◽  
Author(s):  
Dusica Djokic-Stojanovic ◽  
Zoran Todorovic ◽  
Dragan Troter ◽  
Olivera Stamenkovic ◽  
Ljiljana Veselinovic ◽  
...  

Triethanolamine was applied as an efficient ?green? cosolvent for biodiesel production by CaO-catalyzed ethanolysis of sunflower oil. The reaction was conducted in a batch stirred reactor and optimized with respect to the reaction temperature (61.6-78.4?C), the ethanol-to-oil molar ratio (7:1-17:1) and the cosolvent loading (3-36 % of the oil weight) by using a rotatable central composite design (RCCD) combined with the response surface methodology (RSM). The optimal reaction conditions were found to be: the ethanol-to-oil molar ratio of 9:1, the reaction temperature of 75?C and the cosolvent loading of 30 % to oil weight, which resulted in the predicted and actual fatty acid ethyl ester (FAEE) contents of 98.8 % and 97.9?1.3 %, respectively, achieved within only 20 min of the reaction. Also, high FAEE contents were obtained with expired sunflower oil, hempseed oil and waste lard. X-ray diffraction analysis (XRD) was used to understand the changes in the CaO phase. The CaO catalyst can be used without any treatment in two consecutive cycles. Due to the calcium leaching into the product, an additional purification stage must be included in the overall process.


2015 ◽  
Vol 659 ◽  
pp. 216-220 ◽  
Author(s):  
Achanai Buasri ◽  
Thaweethong Inkaew ◽  
Laorrut Kodephun ◽  
Wipada Yenying ◽  
Vorrada Loryuenyong

The use of waste materials for producing biodiesel via transesterification has been of recent interest. In this study, the pork bone was used as the raw materials for natural hydroxyapatite (NHAp) catalyst. The calcination of animal bone was conducted at 900 °C for 2 h. The raw material and the resulting heterogeneous catalyst were characterized using X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM) and the Brunauer-Emmett-Teller (BET) method. The effects of reaction time, microwave power, methanol/oil molar ratio, catalyst loading and reusability of catalyst were systematically investigated. The optimum conditions, which yielded a conversion of oil of nearly 94%, were reaction time 5 min and microwave power 800 W. The results indicated that the NHAp catalysts derived from pork bone showed good reusability and had high potential to be used as biodiesel production catalysts under microwave-assisted transesterification of Jatropha Curcas oil with methanol.


2015 ◽  
Vol 781 ◽  
pp. 655-658 ◽  
Author(s):  
Thakun Sawiwat ◽  
Somjai Kajorncheappunngam

Synthesis of biodiesel from rubber seed oil using a supercritical methanol was investigated under various reaction conditions (220 - 300°C, 80 - 180 bar) with reaction time of 1-15 min and oil:methanol molar ratio of 1:20 - 1:60. Free fatty acid methyl esters (FAMEs) content were analyzed by gas chromatography-mass spectroscopy (GC-MS). Most properties of produced biodiesel were in good agreement with biodiesel standard (EN 14214). The maximum FAME yield of 86.90% was obtained at 260°C, 160 bar, 5 min reaction time using oil:methanol molar ratio of 1:40. The result showed the acid value of rubber seed oil decreased to 0.58 mgKOH/g from initial 24 mgKOH/g to. It could be concluded from this findings that crude rubber seed oil is a promising alternative raw material for biodiesel synthesis via supercritical methanol tranesterification.


2018 ◽  
Vol 34 (2) ◽  
pp. 267-297 ◽  
Author(s):  
Farrukh Jamil ◽  
Lamya Al-Haj ◽  
Ala’a H. Al-Muhtaseb ◽  
Mohab A. Al-Hinai ◽  
Mahad Baawain ◽  
...  

AbstractDue to increasing concerns about global warming and dwindling oil supplies, the world’s attention is turning to green processes that use sustainable and environmentally friendly feedstock to produce renewable energy such as biofuels. Among them, biodiesel, which is made from nontoxic, biodegradable, renewable sources such as refined and used vegetable oils and animal fats, is a renewable substitute fuel for petroleum diesel fuel. Biodiesel is produced by transesterification in which oil or fat is reacted with short chain alcohol in the presence of a catalyst. The process of transesterification is affected by the mode of reaction, molar ratio of alcohol to oil, type of alcohol, nature and amount of catalysts, reaction time, and temperature. Various studies have been carried out using different oils as the raw material; different alcohols (methanol, ethanol, butanol); different catalysts; notably homogeneous catalysts such as sodium hydroxide, potassium hydroxide, sulfuric acid, and supercritical fluids; or, in some cases, enzymes such as lipases. This article focuses on the application of heterogeneous catalysts for biodiesel production because of their environmental and economic advantages. This review contains a detailed discussion on the advantages and feasibility of catalysts for biodiesel production, which are both environmentally and economically viable as compared to conventional homogeneous catalysts. The classification of catalysts into different categories based on a catalyst’s activity, feasibility, and lifetime is also briefly discussed. Furthermore, recommendations have been made for the most suitable catalyst (bifunctional catalyst) for low-cost oils to valuable biodiesel and the challenges faced by the biodiesel industry with some possible solutions.


2014 ◽  
Vol 49 (1) ◽  
pp. 1-8
Author(s):  
US Akhtar ◽  
MK Hossain ◽  
MS Miran ◽  
MYA Mollah

Porous silica materials were synthesized from tetraethyl orthosilicate (TEOS) using Pluronic P123 (non-ionic triblock copolymer, EO20PO70O20) as template under acidic conditions which was then used to prepare polyaniline (PAni) and porous silica composites (PAnisilica) at a fixed molar ratio. These materials were characterized by nitrogen adsorption-desorption isotherm measured by Barrett-Joyner- Halenda (BJH) method and pore size distribution from desorption branch and surface area measured by the Brunauer-Emmett-Teller (BET) method, scanning electron microscopy (SEM), transmission electron microscopy (TEM), TEM-energy dispersive X-ray (EDX) and Fourier transform infrared (FT-IR) spectroscopy. The composite maintains its structure even after the polymerization and the polymer is dispersed on the inorganic matrix. The rod-like porous silica was about 1?m to 1.5 ?m long and on an average the diameter was in the range of 300- 500 nm. The SEM and TEM images show well ordered 2d hexagonal pore, high specific surface area (850 m2g-1) and uniform pore size of ca. 6.5 nm in diameter. After incorporation of PAni inside the silica pore, framework of porous silica did not collapse and the surface area of the composite was as high as 434 m2g-1 which was 5.5 time higher than our previous report of 78.3 m2g-1. Due to shrinkage of the framework during the incorporation of aniline inside the silica, the pore diameter slightly increase to 7.5 nm but still showing Type IV isotherm and typical hysteresis loop H1 implying a uniform cylindrical pore geometry. DOI: http://dx.doi.org/10.3329/bjsir.v49i1.18847 Bangladesh J. Sci. Ind. Res. 49(1), 1-8, 2014


Sign in / Sign up

Export Citation Format

Share Document