scholarly journals Calibrating Partial Factors – Methodology, Input Data and Case Study of Steel Structures

Author(s):  
Vitali Nadolski ◽  
Árpád Rózsás ◽  
Miroslav Sýkora

Partial factors are commonly based on expert judgements and on calibration to previous design formats. This inevitably results in unbalanced structural reliability for different types of construction materials, loads and limit states. Probabilistic calibration makes it possible to account for plentiful requirements on structural performance, environmental conditions, production and execution quality etc. In the light of ongoing revisions of Eurocodes and the development of National Annexes, the study overviews the methodology of probabilistic calibration, provides input data for models of basic variables and illustrates the application by a case study. It appears that the partial factors recommended in the current standards provide for a lower reliability level than that indicated in EN 1990. Different values should be considered for the partial factors for imposed, wind and snow loads, appreciating the distinct nature of uncertainties in their load effects.

2017 ◽  
Vol 21 ◽  
pp. 190-195
Author(s):  
Ioan Tuns ◽  
Marius Mantulescu ◽  
Teofil Florin Galatanu

Any building must ensure safety conditions during the exploitation, at the level of designed exigencies, throughout the entire lifespan. The completion degree of the structural performance requirements, in the given exploitation conditions, results following the assessment of the technical state of the building. This paper presents a case study performed on an industrial “ground floor” type building, with the purpose to assess the exploitation safety level for the constituent structural elements and engineered consolidation measures. The structural reliability solutions have been designed in compliance with the execution possibilities limited by the existing of ventilation tubing , of big dimensions , made in France, of ,,polyester reinforced with glass fiber’’, which is situated along columns of axis A, at 30 cm approximate and the owner cannot to interrupt the technological process during the works.


Author(s):  
Peteris Drukis ◽  
Līga Gaile ◽  
Vadims Goremikins

– Structural reliability of buildings has become an important issue after the collapse of a shopping centre in Riga 21.11.2013, caused the death of 54 people. The reliability of a building is the practice of designing, constructing, operating, maintaining and removing buildings in ways that ensure maintained health, ward suffered injuries or death due to use of the building. Evaluation and improvement of existing buildings is becoming more and more important. For a large part of existing buildings, the design life has been reached or will be reached in the near future. The structures of these buildings need to be reassessed in order to find out whether the safety requirements are met. The safety requirements provided by the Eurocodes are a starting point for the assessment of safety. However, it would be uneconomical to require all existing buildings and structures to comply fully with these new codes and corresponding safety levels, therefore the assessment of existing buildings differs with each design situation. This case study describes the simple and practical procedure of determination of minimal reliability index β of existing steel structures designed by different codes than Eurocodes and allows to reassess the actual safety level of different structural elements of existing buildings under design load.


1980 ◽  
Vol 7 (4) ◽  
pp. 588-596 ◽  
Author(s):  
P. Dumonteil

The study of current work on steel code calibration shows that uncertainties in member resistances, load effects, and structural analysis are most usually assumed to have mean values equal to unity. The risk of failure that would result from the apparent safety index is higher than borne out by experience. Perhaps more important is the fact that it is necessary to assume elastic and determinate properties. These restrictions are removed if the various uncertainties are examined separately. It is then shown that their combined effect leads to a global uncertainty of a random nature, whose mean value is less than 1.0. The actual risk of failure is 5–10 times lower than the apparent one.


2017 ◽  
Vol 1 (1) ◽  
pp. 1-16
Author(s):  
John Harner ◽  
Lee Cerveny ◽  
Rebecca Gronewold

Natural resource managers need up-to-date information about how people interact with public lands and the meanings these places hold for use in planning and decision-making. This case study explains the use of public participatory Geographic Information System (GIS) to generate and analyze spatial patterns of the uses and values people hold for the Browns Canyon National Monument in Colorado. Participants drew on maps and answered questions at both live community meetings and online sessions to develop a series of maps showing detailed responses to different types of resource uses and landscape values. Results can be disaggregated by interaction types, different meaningful values, respondent characteristics, seasonality, or frequency of visit. The study was a test for the Bureau of Land Management and US Forest Service, who jointly manage the monument as they prepare their land management plan. If the information generated is as helpful throughout the entire planning process as initial responses seem, this protocol could become a component of the Bureau’s planning tool kit.


2020 ◽  
Vol 92 (6) ◽  
pp. 51-58
Author(s):  
S.A. SOLOVYEV ◽  

The article describes a method for reliability (probability of non-failure) analysis of structural elements based on p-boxes. An algorithm for constructing two p-blocks is shown. First p-box is used in the absence of information about the probability distribution shape of a random variable. Second p-box is used for a certain probability distribution function but with inaccurate (interval) function parameters. The algorithm for reliability analysis is presented on a numerical example of the reliability analysis for a flexural wooden beam by wood strength criterion. The result of the reliability analysis is an interval of the non-failure probability boundaries. Recommendations are given for narrowing the reliability boundaries which can reduce epistemic uncertainty. On the basis of the proposed approach, particular methods for reliability analysis for any structural elements can be developed. Design equations are given for a comprehensive assessment of the structural element reliability as a system taking into account all the criteria of limit states.


The effective altruism movement consists of a growing global community of people who organize significant parts of their lives around two key ideas, represented in its name. Altruism: If we use a significant portion of the resources in our possession—whether money, time, or talents—with a view to helping others, we can improve the world considerably. Effectiveness: When we do put such resources to altruistic use, it is crucial to focus on how much good this or that intervention is reasonably expected to do per unit of resource expended (for example, per dollar donated). While global poverty is a widely used case study in introducing and motivating effective altruism, if the ultimate aim is to do the most good one can with the resources expended, it is far from obvious that global poverty alleviation is highest priority cause area. In addition to ranking possible poverty-alleviation interventions against one another, we can also try to rank interventions aimed at very different types of outcome against one another. This includes, for example, interventions focusing on animal welfare or future generations. The scale and organization of the effective altruism movement encourage careful dialogue on questions that have perhaps long been there, throwing them into new and sharper relief, and giving rise to previously unnoticed questions. In the present volume, the first of its kind, a group of internationally recognized philosophers, economists, and political theorists contribute in-depth explorations of issues that arise once one takes seriously the twin ideas of altruistic commitment and effectiveness.


Author(s):  
Andrea B. Temkin ◽  
Mina Yadegar ◽  
Christine Cho ◽  
Brian C. Chu

In recent years, the field of clinical psychology has seen a growing movement toward the research and development of transdiagnostic treatments. Transdiagnostic approaches have the potential to address numerous issues related to the development and treatment of mental disorders. Among these are the high rates of comorbidity across disorders, the increasing need for efficient protocols, and the call for treatments that can be more easily disseminated. This chapter provides a review of the current transdiagnostic treatment approaches for the treatment of youth mental disorders. Three different types of transdiagnostic protocols are examined: mechanism-based protocols, common elements treatments, and general treatment models that originated from single-disorder approaches to have broader reach. A case study illuminates how a mechanism-based approach would inform case conceptualization for a client presenting with internalizing and externalizing symptoms and how a transdiagnostic framework translates into practice.


Geosciences ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 150
Author(s):  
Nilgün Güdük ◽  
Miguel de la Varga ◽  
Janne Kaukolinna ◽  
Florian Wellmann

Structural geological models are widely used to represent relevant geological interfaces and property distributions in the subsurface. Considering the inherent uncertainty of these models, the non-uniqueness of geophysical inverse problems, and the growing availability of data, there is a need for methods that integrate different types of data consistently and consider the uncertainties quantitatively. Probabilistic inference provides a suitable tool for this purpose. Using a Bayesian framework, geological modeling can be considered as an integral part of the inversion and thereby naturally constrain geophysical inversion procedures. This integration prevents geologically unrealistic results and provides the opportunity to include geological and geophysical information in the inversion. This information can be from different sources and is added to the framework through likelihood functions. We applied this methodology to the structurally complex Kevitsa deposit in Finland. We started with an interpretation-based 3D geological model and defined the uncertainties in our geological model through probability density functions. Airborne magnetic data and geological interpretations of borehole data were used to define geophysical and geological likelihoods, respectively. The geophysical data were linked to the uncertain structural parameters through the rock properties. The result of the inverse problem was an ensemble of realized models. These structural models and their uncertainties are visualized using information entropy, which allows for quantitative analysis. Our results show that with our methodology, we can use well-defined likelihood functions to add meaningful information to our initial model without requiring a computationally-heavy full grid inversion, discrepancies between model and data are spotted more easily, and the complementary strength of different types of data can be integrated into one framework.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 29
Author(s):  
Mahdi Shadabfar ◽  
Cagri Gokdemir ◽  
Mingliang Zhou ◽  
Hadi Kordestani ◽  
Edmond V. Muho

This paper presents a review of the existing models for the estimation of explosion-induced crushed and cracked zones. The control of these zones is of utmost importance in the rock explosion design, since it aims at optimizing the fragmentation and, as a result, minimizing the fine grain production and recovery cycle. Moreover, this optimization can reduce the damage beyond the set border and align the excavation plan with the geometric design. The models are categorized into three groups based on the approach, i.e., analytical, numerical, and experimental approaches, and for each group, the relevant studies are classified and presented in a comprehensive manner. More specifically, in the analytical methods, the assumptions and results are described and discussed in order to provide a useful reference to judge the applicability of each model. Considering the numerical models, all commonly-used algorithms along with the simulation details and the influential parameters are reported and discussed. Finally, considering the experimental models, the emphasis is given here on presenting the most practical and widely employed laboratory models. The empirical equations derived from the models and their applications are examined in detail. In the Discussion section, the most common methods are selected and used to estimate the damage size of 13 case study problems. The results are then utilized to compare the accuracy and applicability of each selected method. Furthermore, the probabilistic analysis of the explosion-induced failure is reviewed using several structural reliability models. The selection, classification, and discussion of the models presented in this paper can be used as a reference in real engineering projects.


Sign in / Sign up

Export Citation Format

Share Document