Residual Stress Analysis of Bimaterial Strips Under Multiple Thermal Loading

1997 ◽  
Vol 119 (4) ◽  
pp. 281-287 ◽  
Author(s):  
J. W. Tierney ◽  
J. W. Eischen

The residual stress distribution in bimaterial beams induced by multiple thermal loadings has been investigated. Three models for the nonlinear stress-strain material behavior were considered: bilinear elastic-plastic, power law elastic-plastic, and power law purely plastic. The equations governing equilibrium, compatibility of strain, and stress-strain for the bimaterial configuration make up a system of nonlinear algebraic equations which is solved numerically. The elastic-plastic power law model leads to stress discontinuity in the layers. The other two models have been verified with a finite element analysis. Several examples are included using materials common to the microelectronics industry.

Author(s):  
Jalal Joudaki ◽  
Mohammad Sedighi

A considerable residual stress distribution can be produced while bending of parts. This stress distribution depends on material behavior. In this article, residual stress distribution has been determined through the thickness in beam bending. For three different models of elastic–plastic behavior, the stress distribution and maximum residual stress are derived analytically. The residual stress is compared for three different bending radii as a case study. Also, finite element analysis has been carried out for two material properties. The results show that material behavior has little effect on stress distribution for large value of bending radius. As the bending radius decreases, difference of stress distribution increases rapidly among three plastic behaviors. Comparing the results of finite element and analytical stress distribution shows good accuracy for suggested formulations.


Author(s):  
Ines Gilch ◽  
Tobias Neuwirth ◽  
Benedikt Schauerte ◽  
Nora Leuning ◽  
Simon Sebold ◽  
...  

AbstractTargeted magnetic flux guidance in the rotor cross section of rotational electrical machines is crucial for the machine’s efficiency. Cutouts in the electrical steel sheets are integrated in the rotor sheets for magnetic flux guidance. These cutouts create thin structures in the rotor sheets which limit the maximum achievable rotational speed under centrifugal forces and the maximum energy density of the rotating electrical machine. In this paper, embossing-induced residual stress, employing the magneto-mechanical Villari effect, is studied as an innovative and alternative flux barrier design with negligible mechanical material deterioration. The overall objective is to replace cutouts by embossings, increasing the mechanical strength of the rotor. The identification of suitable embossing geometries, distributions and methodologies for the local introduction of residual stress is a major challenge. This paper examines finely distributed pyramidal embossings and their effect on the magnetic material behavior. The study is based on simulation and measurements of specimen with a single line of twenty embossing points performed with different punch forces. The magnetic material behavior is analyzed using neutron grating interferometry and a single sheet tester. Numerical examinations using finite element analysis and microhardness measurements provide a more detailed understanding of the interaction of residual stress distribution and magnetic material properties. The results reveal that residual stress induced by embossing affects magnetic material properties. Process parameters can be applied to adjust the magnetic material deterioration and the effect of magnetic flux guidance.


1985 ◽  
Vol 58 (4) ◽  
pp. 830-856 ◽  
Author(s):  
R. J. Cembrola ◽  
T. J. Dudek

Abstract Recent developments in nonlinear finite element methods (FEM) and mechanics of composite materials have made it possible to handle complex tire mechanics problems involving large deformations and moderate strains. The development of an accurate material model for cord/rubber composites is a necessary requirement for the application of these powerful finite element programs to practical problems but involves numerous complexities. Difficulties associated with the application of classical lamination theory to cord/rubber composites were reviewed. The complexity of the material characterization of cord/rubber composites by experimental means was also discussed. This complexity arises from the highly anisotropic properties of twisted cords and the nonlinear stress—strain behavior of the laminates. Micromechanics theories, which have been successfully applied to hard composites (i.e., graphite—epoxy) have been shown to be inadequate in predicting some of the properties of the calendered fabric ply material from the properties of the cord and rubber. Finite element models which include an interply rubber layer to account for the interlaminar shear have been shown to give a better representation of cord/rubber laminate behavior in tension and bending. The application of finite element analysis to more refined models of complex structures like tires, however, requires the development of a more realistic material model which would account for the nonlinear stress—strain properties of cord/rubber composites.


Author(s):  
Xian-Kui Zhu ◽  
Rick Wang

Mechanical dents often occur in transmission pipelines, and are recognized as one of major threats to pipeline integrity because of the potential fatigue failure due to cyclic pressures. With matured in-line-inspection (ILI) technology, mechanical dents can be identified from the ILI runs. Based on ILI measured dent profiles, finite element analysis (FEA) is commonly used to simulate stresses and strains in a dent, and to predict fatigue life of the dented pipeline. However, the dent profile defined by ILI data is a purely geometric shape without residual stresses nor plastic deformation history, and is different from its actual dent that contains residual stresses/strains due to dent creation and re-rounding. As a result, the FEA results of an ILI dent may not represent those of the actual dent, and may lead to inaccurate or incorrect results. To investigate the effect of residual stress or plastic deformation history on mechanics responses and fatigue life of an actual dent, three dent models are considered in this paper: (a) a true dent with residual stresses and dent formation history, (b) a purely geometric dent having the true dent profile with all stress/strain history removed from it, and (c) a purely geometric dent having an ILI defined dent profile with all stress/strain history removed from it. Using a three-dimensional FEA model, those three dents are simulated in the elastic-plastic conditions. The FEA results showed that the two geometric dents determine significantly different stresses and strains in comparison to those in the true dent, and overpredict the fatigue life or burst pressure of the true dent. On this basis, suggestions are made on how to use the ILI data to predict the dent fatigue life.


Author(s):  
Andrius Grigusevičius ◽  
Gediminas Blaževičius

This paper focuses on the creation and numerical application of physically nonlinear plane steel frames analysis problems. The frames are analysed using finite elements with axial and bending deformations taken into account. Two nonlinear physical models are used and compared – linear hardening and ideal elastic-plastic. In the first model, distributions of plastic deformations along the elements and across the sections are taken into account. The proposed method allows for an exact determination of the stress-strain state of a rectangular section subjected to an arbitrary combination of bending moment and axial force. Development of plastic deformations in time and distribution along the length of elements are determined by dividing the structure (and loading) into the parts (increments) and determining the reduced modulus of elasticity for every part. The plastic hinge concept is used for the analysis based on the ideal elastic-plastic model. The created calculation algorithms have been fully implemented in a computer program. The numerical results of the two problems are presented in detail. Besides the stress-strain analysis, the described examples demonstrate how the accuracy of the results depends on the number of finite elements, on the number of load increments and on the physical material model. COMSOL finite element analysis software was used to compare the presented 1D FEM methodology to the 3D FEM mesh model analysis.


1999 ◽  
Vol 122 (2) ◽  
pp. 121-127 ◽  
Author(s):  
Manjula N. Variyam ◽  
Weidong Xie ◽  
Suresh K. Sitaraman

Components in electronic packaging structures are of different dimensions and are made of dissimilar materials that typically have time, temperature, and direction-dependent thermo-mechanical properties. Due to the complexity in geometry, material behavior, and thermal loading patterns, finite-element analysis (FEA) is often used to study the thermo-mechanical behavior of electronic packaging structures. For computational reasons, researchers often use two-dimensional (2D) models instead of three-dimensional (3D) models. Although 2D models are computationally efficient, they could provide misleading results, particularly under thermal loading. The focus of this paper is to compare the results from various 2D, 3D, and generalized plane-deformation strip models and recommend a suitable modeling procedure. Particular emphasis is placed to understand how the third-direction coefficient of thermal expansion (CTE) influences the warpage and the stress results predicted by 2D models under thermal loading. It is seen that the generalized plane-deformation strip models are the best compromise between the 2D and 3D models. Suitable analytical formulations have also been developed to corroborate the findings from the study. [S1043-7398(00)01402-X]


2007 ◽  
Vol 345-346 ◽  
pp. 1241-1244 ◽  
Author(s):  
Mohd. Zahid Ansari ◽  
Sang Kyo Lee ◽  
Chong Du Cho

Biological soft tissues like muscles and cartilages are anisotropic, inhomogeneous, and nearly incompressible. The incompressible material behavior may lead to some difficulties in numerical simulation, such as volumetric locking and solution divergence. Mixed u-P formulations can be used to overcome incompressible material problems. The hyperelastic materials can be used to describe the biological skeletal muscle behavior. In this study, experiments are conducted to obtain the stress-strain behavior of a solid silicone rubber tube. It is used to emulate the skeletal muscle tensile behavior. The stress-strain behavior of silicone is compared with that of muscles. A commercial finite element analysis package ABAQUS is used to simulate the stress-strain behavior of silicone rubber. Results show that mixed u-P formulations with hyperelastic material model can be used to successfully simulate the muscle material behavior. Such an analysis can be used to simulate and analyze other soft tissues that show similar behavior.


Author(s):  
Junya Miura ◽  
Terutaka Fujioka ◽  
Yasuhiro Shindo

This paper proposes simplified methods to evaluate fatigue damage in a component subjected to cyclic thermal loading, in order to visualize the distribution of usage factor using a graphical user interface (GUI) incorporated in a widely-used commercial CAE. The objective is to perform the evaluation and visualization using a standard desktop PC. In the previous paper, three simplified methods based on elastic finite-element analysis (FEA) were proposed in place of the method in the procedures employed in ASME Section III Subsection NH. In this paper, the methods have been improved for elastic-plastic FEA. A previously performed thermal fatigue test with a type 304 stainless steel cylinder was simulated. Heat transfer, elastic, and inelastic analyses were conducted. Simultaneously with the analyses performed, the equivalent total strain ranges and fatigue usage factor distributions were calculated using user subroutines developed in this study including three newly proposed simplified and ASME NH-based methods. These distributions can be visualized on a GUI incorporated in a commercial FEA code. The calculation results were consistent with the distribution of cracks observed. In addition, by using these, the analysts can visualize these distributions using their familiar CAE system.


Author(s):  
Zijian Zhao ◽  
Abdel-Hakim Bouzid

Abstract SS316L finned tubes are becoming very popular in high-pressure gas exchangers and particularly in CO2 cooler applications. Due to the high-pressure requirement during operation, these tubes require an accurate residual stress evaluation during the expansion process. Indeed, die expansion of SS tubes creates not only high stresses when combined with operation stresses but also micro-cracks during expansion when the expansion process is not very well controlled. This research work aims at studying the elastic-plastic behavior and estimating the residual stress states by modeling the die expansion process. The stresses and deformations of the joint are analyzed numerically using the finite element method. The expansion and contraction process is modeled considering elastic-plastic material behavior for different die sizes. The maximum longitudinal, tangential and contact stresses are evaluated to verify the critical stress state of the joint during the expansion process. The importance of the material behavior in evaluating the residual stresses using kinematic and isotropic hardening is addressed.


2016 ◽  
Vol 08 (06) ◽  
pp. 1650082 ◽  
Author(s):  
Liang Zhang ◽  
Huiting Zhang ◽  
Jian Wu ◽  
Bo Yan ◽  
Mengkai Lu

Bi-modulus materials have different moduli in tension and compression and the stress–strain relation depends on principal stress that is unknown before displacement is determined. Establishment of variational principle is important for mechanical analysis of materials. First, parametric variational principle (PVP) is proposed for static analysis of bi-modulus materials and structures. A parametric variable indicating state of principal stress is included in the potential energy formulation and the nonlinear stress–strain relation is evolved into a linear complementarity constraint. Convergence of finite element analysis is thus improved. Then the proposed variational principle is extended to a dynamic problem and the dynamic equation can be derived based on Hamilton’s principle. Finite element analysis of nacreous bio-composites is performed, in which a unilateral contact behavior between two hard mineral bricks is modeled using the bi-modulus stress–strain relation. Effective modulus of composites can be determined numerically and stress mechanism of “tension–shear chain” in nacre is revealed. A delayed effect on stress propagation is found around the “gaps” between mineral bricks, when a tension force is loaded to nacreous bio-composites dynamically.


Sign in / Sign up

Export Citation Format

Share Document