scholarly journals Investigating the Effect of Curing and Thermal Equilibrium Time on Rutting Potential of Hot Mix Asphalt

Author(s):  
Morteza Ghaffari Jajin ◽  
Niloofar Esmaeili ◽  
Gholam Hossein Hamedi

Rutting is a common damage of flexible pavements, reducing the service life of asphalt pavement. Due to laboratory limitations, asphalt mixtures are subjected to different curing times (since construction until placement in the test chamber) and thermal equilibrium times (since placement in the test chamber until the beginning of the test) before rutting tests. Neglecting these factors can lead to errors in the laboratory results. Therefore, the present study attempted to investigate the effect of curing times of 1, 2, and 3 days at 25ºC and thermal equilibrium times of 2, 4, and 6 hours on the rutting potential of different hot-mix asphalt (HMA) mixtures. Results of rutting tests showed that the rutting potential of asphalt mixtures decreases by increasing the curing time, while the permanent deformation at the end of loading cycles and rutting potential increase by increasing the thermal equilibrium time. Additionally, the results of statistical analyses revealed that curing time and thermal equilibrium time change the rutting potential of asphalt mixtures.

2011 ◽  
Vol 39 (1) ◽  
pp. 102699 ◽  
Author(s):  
M. R. Mitchell ◽  
R. E. Link ◽  
Feipeng Xiao ◽  
Serji N. Amirkhanian ◽  
Boli Wu

2007 ◽  
Vol 35 (3) ◽  
pp. 13153 ◽  
Author(s):  
M. R. Mitchell ◽  
R. E. Link ◽  
Elie Y. Hajj ◽  
Raj V. Siddharthan ◽  
Peter E. Sebaaly ◽  
...  

2017 ◽  
Vol 2633 (1) ◽  
pp. 108-116 ◽  
Author(s):  
Max A. Aguirre ◽  
Marwa M. Hassan ◽  
Sharareh Shirzad ◽  
Louay N. Mohammad ◽  
Samuel B. Cooper

The use of recycled asphalt shingles (RAS) in asphalt paving construction represents a sustainable approach to reduce virgin material consumption and negative environmental effects, as well as the cost of asphalt pavement. However, many challenges are yet to be addressed about the use of RAS in paving applications. This study evaluated the effect of the incorporation of postconsumer waste shingles and rejuvenators on the performance of hot-mix asphalt. Four asphalt rejuvenators—one bio-oil and three synthetic oils—were evaluated. A set of laboratory tests was conducted to characterize the performance of asphalt mixtures against permanent deformation and fatigue cracking. The addition of 5% RAS showed an improvement in permanent deformation when compared with a conventional mixture with no RAS. Yet the addition of asphalt rejuvenator products slightly decreased the performance against permanent deformation. On the basis of Hamburg wheel-tracking device test results, the addition of RAS did not adversely affect moisture resistance. Yet semicircular bending test results showed that the asphalt mixtures that contained asphalt rejuvenators had a lower critical strain energy release rate than the minimum threshold value (0.5 kJ/m2), which indicated a greater susceptibility to intermediate-temperature cracking.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4704
Author(s):  
Waqas Rafiq ◽  
Madzlan Bin Napiah ◽  
Muslich Hartadi Sutanto ◽  
Wesam Salah Alaloul ◽  
Zarisha Nadia Binti Zabri ◽  
...  

Moisture damage in hot mix asphalt pavements is a periodic but persistent problem nowadays, even though laboratory testing is performed to identify different moisture-susceptible mixtures. In this study, a Hamburg Wheel Tracking device (HWTD) was used for rutting tests which were conducted on control and a high percentage of recycled asphalt pavement (RAP), i.e., 30%, 50% and 100% of virgin mixtures, under air dry and water-immersed conditions. Similarly, the extracted bitumen from RAP was tested for binder physical properties. Results showed that the asphalt mixtures containing RAP have less rut depth as compared to the control mix both in air dry and immersion conditions and hence showed better anti-rutting properties and moisture stability. Stripping performance of control and RAP containing mixtures was also checked, concluding that the RAP mixture was greatly dependent on the interaction between the binder (virgin plus aged) and aggregates.


Author(s):  
Stephan Büchler ◽  
Augusto Cannone Falchetto ◽  
Axel Walther ◽  
Chiara Riccardi ◽  
Di Wang ◽  
...  

This paper presents an experimental investigation on the combined use of high content of reclaimed asphalt pavement (RAP) and rejuvenators, for producing asphalt mixtures for wearing courses. First, the new Binder-Fast-Characterization-Test (Bitumen Typisierungs Schnell Verfahren in German) BTSV method, recently proposed in Germany, is used to determine the amount of rejuvenator required to design recycled mixtures for a specific RAP source. Then, a set of seven asphalt mixtures for wearing course is prepared with different amounts of RAP and with three types of rejuvenators. The BTSV procedure is further applied to evaluate the rheological properties of the binder extracted from the mixtures. Resistance to permanent deformation, stiffness, fatigue, and low temperature behavior tests are then performed to determine the material response. It is observed that the use of recycled material and rejuvenators results in similar or better deformation resistance, higher stiffness and enhanced low temperature properties, with an improved fatigue behavior, also for high RAP content, when compared to mixtures prepared with virgin material. These findings suggest the possibility of using rejuvenators for field tests on wearing courses.


2019 ◽  
Vol 8 (4) ◽  
pp. 7001-7006

Premature pavement breakdown can be caused by permanent deformation that can contribute to lower riding comfort for road users and an increase in maintenance costs. Dynamic modulus Simple Performance Test (SPT) test are considered to be significant in describing the permanent deformation of hot mix asphalt. In this study, Marshall method of mix design were used in order to prepare four asphalt mixtures comprising different content of Nanopolyacrylate (NP) polymer (0%NP, 2%NP, 4%NP and 6%NP). This study was aimed to evaluate the influence of the NP modified mixture on the permanent deformation. The Performance Grade PG64-22 was obtained by mixing the conventional bitumen (PG64-22) with nanopolyacrylate. Dynamic Shear Rheometer (DSR) at different aging condition were conducted in order to characterise the bitumen performance. While, the Simple Performance Test (SPT) was used to characterize rutting and fatigue on Marshall HMA mixes. Results from the study presented that, NP modified bitumen has a significant impact on the dynamic and rutting resistance. The addition of nanopolyacrylate significantly enhances the rheological properties of asphalt bitumen. The results revealed that 4%NP has high potential to improve rutting and fatigue resistance


2012 ◽  
Vol 53 ◽  
pp. 379-388 ◽  
Author(s):  
O. Reyes-Ortiz ◽  
E. Berardinelli ◽  
A.E. Alvarez ◽  
J.S. Carvajal-Muñoz ◽  
L.G. Fuentes

2012 ◽  
Vol 587 ◽  
pp. 57-61
Author(s):  
Rashid Tanzadeh ◽  
Mahyar Arabani

Modification of the asphalt binder is one approach taken to improve aged pavement performance. To make the most of maintenance budgets, many agencies have resorted to the use of asphalt rejuvenators as an alternative to revive aging and brittle asphalt pavements. The purpose of this study is laboratory research on the effect of asphalt emulsion in restoring the original properties of aged asphalt pavement. For this purpose, the repeated load axial test is carried out on conventional asphalt samples and aged asphalt samples containing rejuvenator agents in different stress and rejuvenator percentage. Bitumen aged with RTFO according to ASTM-D2872 and the optimum bitumen of 5.5% were considered. The softening point and penetration tests, to examine the effect of rejuvenator in asphalt mixtures modification, On the basic, aged and modified aged bitumen were performed. The results represent that asphalt emulsion as a rejuvenator material in aged asphalt samples because of suitable performance improve aged asphalt permanent deformation resistance and aged bitumen Rheological property.


2021 ◽  
Author(s):  
Dlzar Qadr ◽  
◽  
Aso Talabany ◽  
Sinan Salahaddin ◽  
◽  
...  

Increasing the number of vehicles on the road quickly in which generates a large amount of waste tyres; it is a major concern of asphalt pavement distresses which causes permanent deformation this is results of the rapid development of economic and industrial nowadays. In order to solve this problem waste of tyres has been tried to use as utilization of bitumen modification to improve the performance of the asphalt pavement as well as for providing an environmentally friendly which is a green technology. The main aim of this literature is to evaluate the effect of polymer Modifier from previous researchers’ point of view on the performance of asphalt pavement in order to demonstrate the performance of Hot Mix Asphalt in terms of improving the significant flexible pavement deteriorations such as permanent deformation (rutting), fatigue cracking, and low temperature cracking (thermal cracking).


Sign in / Sign up

Export Citation Format

Share Document