scholarly journals Computational Aeroacoustic Investigation of Airfoil Cascades

2020 ◽  
Vol 64 (4) ◽  
pp. 279-288
Author(s):  
Bálint Lendvai ◽  
Tamás Benedek

At moderate Reynolds numbers and angles of attack, the Laminar Boundary Layer (LBL) becomes unstable on the surface of airfoils, and causes periodic vortex shedding, which means undesired tonal peaks in the spectrum of the emitted aeroacoustic noise along with increased vibration and decreased aerodynamic performance. In the past, numerous research campaigns focused on the LBL vortex shedding, including measurements and numerical simulations as well. The results of these investigation showed that, the formation of the LBL instability related to the presence of the laminar separation bubble. It was also shown that, the spectrum of the emitted noise has a multitonal behavior, and the scaling of the mean frequency with the free stream velocity has a ladder structure. Based on these results, the LBL instability is a complex phenomenon; however, in the preliminary design of axial flow turbomachines the prediction of the frequency of the vortex shedding is essential, therefore the use of semi-empirical formulas is usual to achieve this goal. The previous researches mostly focused on separated airfoils, however, in case of turbomachines, the blades form a cascade, which can significantly affect the aerodynamic of the airfoils, i.e. it can affect the behavior of the LBL instability as well. According to this, in the present paper the LBL instability of NACA 0012 cascades are investigated, using 2D computational fluid mechanics and aeroacoustics simulations. The investigation involves the variation of the angle of attack, the chord based Reynolds-number and the spacing. The results are compared to the semi-empirical Brooks-Pope-Marcolini model.

Author(s):  
Jenny Baumann ◽  
Ulrich Rist ◽  
Martin Rose ◽  
Tobias Ries ◽  
Stephan Staudacher

The reduction of blade counts in the LP turbine is one possibility to cut down weight and therewith costs. At low Reynolds numbers the suction side laminar boundary layer of high lift LP turbine blades tends to separate and hence cause losses in turbine performance. To limit these losses, the control of laminar separation bubbles has been the subject of many studies in recent years. A project is underway at the University of Stuttgart that aims to suppress laminar separation at low Reynolds numbers (60,000) by means of actuated transition. In an experiment a separating flow is influenced by disturbances, small in amplitude and of a certain frequency, which are introduced upstream of the separation point. Small existing disturbances are therewith amplified, leading to earlier transition and a more stable boundary layer. The separation bubble thus gets smaller without need of a high air mass flow as for steady blowing or pulsed vortex generating jets. Frequency and amplitude are the parameters of actuation. The non-dimensional actuation frequency is varied from 0.2 to 0.5, whereas the normalized amplitude is altered between 5, 10 and 25% of the free stream velocity. Experimental investigations are made by means of PIV and hot wire measurements. Disturbed flow fields will be compared to an undisturbed one. The effectiveness of the presented boundary layer control will be compared to those of conventional ones. Phase-logged data will give an impression of the physical processes in the actuated flow.


2019 ◽  
Vol 11 ◽  
pp. 175682931983368 ◽  
Author(s):  
Yasir A ElAwad ◽  
Eltayeb M ElJack

High-fidelity large eddy simulation is carried out for the flow field around a NACA-0012 aerofoil at Reynolds number of [Formula: see text], Mach number of 0.4, and various angles of attack around the onset of stall. The laminar separation bubble is formed on the suction surface of the aerofoil and is constituted by the reattached shear layer. At these conditions, the laminar separation bubble is unstable and switches between a short bubble and an open bubble. The instability of the laminar separation bubble triggers a low-frequency flow oscillation. The aerodynamic coefficients oscillate accordingly at a low frequency. The lift and the drag coefficients compare very well to recent high-accuracy experimental data, and the lift leads the drag by a phase shift of [Formula: see text]. The mean lift coefficient peaks at the angle of attack of [Formula: see text], in total agreement with the experimental data. The spectra of the lift coefficient does not show a significant low-frequency peak at angles of attack lower than or equal the stall angle of attack ([Formula: see text]). At higher angles of attack, the spectra show two low-frequency peaks and the low-frequency flow oscillation is fully developed at the angle of attack of [Formula: see text]. The behaviour of the flow-field and changes in the turbulent kinetic energy over one low-frequency flow oscillation cycle are described qualitatively.


2013 ◽  
Vol 135 (10) ◽  
Author(s):  
Daniel Rudmin ◽  
Azemi Benaissa ◽  
Dominique Poirel

A method for mapping the separation and transition of flow over a slowly pitching airfoil with high angular resolution is presented. An array of surface-mounted hot-film sensors is used to record simultaneous corresponding voltages. The method makes use of windowed correlation and spectral signatures of hot-film sensor voltages in synchronization with a servo-motor controlling airfoil pitch angle. Results are given for a NACA-0012 airfoil at three airspeeds at pitch angles of less than 6 deg. The airspeeds correspond to a region of known aeroelastic instability; they are situated between chord Reynolds numbers of 50,000 and 130,000. Tests in static and quasi-static pitch motion schedules were conducted. The quasi-static airfoil was sinusoidally pitching at 0.025 Hz between −6 deg and +6 deg (corresponding to a half-chord based reduced frequency between 0.0011 and 0.0020) and the detected separation and transition agreed very well with the static case. These results constitute a verification of the method used and provide insight into the size and location of the laminar separation bubble at transitional Reynolds numbers.


Author(s):  
Antoine Ducoin ◽  
Jacques Andre´ Astolfi ◽  
Marie-Laure Gobert

In this paper, we investigate through an experimental approach the laminar to turbulent transition in the boundary-layer flow along a hydrofoil at a Reynolds number of 7.5 × 105, together with the vibrations of the hydrofoil induced by the transition. The latter is caused by a Laminar Separation Bubble (LSB) resulting from a laminar separation of the boundary-layer. The experiments, conducted in the hydrodynamic tunnel of the Research Institute of the French Naval Academy, are based on wall pressure and flow velocity measurements along a rigid hydrofoil, which enable a characterization of the Laminar Separation Bubble and the identification of a vortex shedding at a given frequency. Vibrations measurements are then carried out on a flexible hydrofoil in the same operating conditions. The results indicate that the boundary-layer transition induces important vibrations, whose characteristics in terms of frequency and amplitude depend on the vortex shedding frequency, and can be coupled with natural frequencies.


2021 ◽  
Vol 929 ◽  
Author(s):  
Connor E. Toppings ◽  
Serhiy Yarusevych

The three-dimensional flow topology of a laminar separation bubble forming on the suction surface of a semispan wing with an aspect ratio of $2.5$ and NACA 0018 airfoil section is characterised experimentally using surface pressure measurements and particle image velocimetry at a chord Reynolds number of $125\ 000$ . In the inboard region of the wing, the separation bubble is essentially two-dimensional, and the transition process in the separated shear layer leads to periodic vortex shedding, which dominates the bubble dynamics, similar to two-dimensional separation bubbles. However, progressive spanwise changes in the mean structure and vortex dynamics occur near the wingtip, leading to an open separation and eventual suppression of the bubble. In the immediate proximity of the wingtip, the boundary layer remains attached, no vortex shedding occurs and the flow remains laminar, terminating separation bubble formation. Despite variations in the mean separation bubble topology and vortex dynamics along the span, the fundamental shedding characteristics remain nearly invariant across the portion of the wing where vortex shedding occurs, and the flow appears to lock onto a common instability mode across the span, leading to minimal changes in the mean bubble characteristics despite notable changes in the effective angle of attack along the span. A comparison with available surface flow visualisations from previous studies indicates that the observed changes to the mean bubble footprint along the span of the wing are similar across different geometries and flow characteristics, suggesting similarities in the three-dimensional bubble topology and dynamics on finite wings.


2021 ◽  
Vol 930 ◽  
Author(s):  
Gaurav Chopra ◽  
Sanjay Mittal

Large eddy simulation of flow past a circular cylinder of low aspect ratio ( $AR=1$ and $3$ ), spanning subcritical, critical and supercritical regimes, is carried out for $2\times 10^3 \le Re \le 4\times 10^5$ . The end walls restrict three-dimensionality of the flow. The critical $Re$ for the onset of the critical regime is significantly lower for small aspect ratio cylinders. The evolution of secondary vortex (SV), laminar separation bubble (LSB) and the related transition of boundary layer with $Re$ is investigated. The plateau in the surface pressure due to LSB is modified by the presence of SV. Proper orthogonal decomposition of surface pressure reveals that although the vortex shedding mode is most dominant throughout the $Re$ regime studied, significant energy of the flow lies in a symmetric mode that corresponds to expansion–contraction of the vortex formation region and is responsible for bursts of weak vortex shedding. A triple decomposition of the time signals comprising of contributions from shear layer vortices, von Kármán vortex shedding and low frequency modulation due to the symmetric mode of flow is proposed. A moving average, with appropriate size of window, is utilized to estimate the component due to vortex shedding. It is used to assess the variation, with $Re$ , of strength of vortex shedding as well as its coherence along the span. Weakening of vortex shedding in the high subcritical and critical regime is followed by its rejuvenation in the supercritical regime. Its spanwise correlation is high in the subcritical regime, decreases in the critical regime and improves again in the supercritical regime.


Author(s):  
Hossein Jabbari ◽  
Mohammad Hassan Djavareshkian ◽  
Ali Esmaeili

Although the tubercle wings provide good maneuverability at post-stall conditions, the aerodynamic performance at pre-stall angles is threatened by forming a laminar separation bubble at the trough section of the tubercle wing; consequently, the flight endurance and range are reduced. In the present study, the idea of passive flow control is introduced by using the distribution of static roughness elements on a full-span wing with a sinusoidal leading edge. Initially, the effect of roughness element length, height, and its location are studied at a pre-stall angle (16-degree). Their effect on the laminar separation bubble and vortex shedding formed behind the wing are also investigated. The Reynolds number is assumed to be equal to [Formula: see text] which is in the range of critical Reynolds number and matches to the micro aerial vehicles application. An improved hybrid model, improved delay detached eddy simulation IDDES, has been used to model the flow turbulence structure. In the extended transition region at low Reynolds numbers, the roughness bypassed the instability. Consequently, roughening the surface of the aerofoil increased the boundary layer’s flow momentum, making it more resistible to adverse pressure gradients. By suppressing the bubble, the static roughness element led to pre-stall flow control, which saw an increase in lift coefficient, [Formula: see text], and a decrease in drag coefficient, [Formula: see text]. The results have been demonstrated that the aerodynamic performance, [Formula: see text], has been improved approximately 22.7%, 38%, and 45% for [Formula: see text], and [Formula: see text], respectively. The optimal arrangement of static roughness elements could decline the size of the vortices and strengthen the cores associated with them. This claim can be interpreted with the vortex shedding frequency.


Sign in / Sign up

Export Citation Format

Share Document