scholarly journals Potential assessment of eucalyptus grown for biorefinery processes

2017 ◽  
Vol 3 (1) ◽  
pp. 1
Author(s):  
Paulo Eichler ◽  
Marcilio Toledo ◽  
Matheus Vilares ◽  
Fernando Gomes ◽  
Rogério Lourega ◽  
...  

With the predictability of oil shortage, there is a strong demand for renewable and sustainable raw materials. In this scenario, lignocellulosic material stands out as a potential solution. With the use of bio-refinery, they can be processed into high value added products through chemical, biochemical and thermochemical processes. A great source of lignocellulosic biomass today is the wood of Eucalyptus, which has high levels of production and productivity in Brazil, reaching numbers between 60-80 m3ha1year-1. In order to achieve a more efficient utilization of biomass in a biorefinery concept, it is necessary first to perform chemical analyses to define the operating conditions of the conversion processes, since heterogeneity and high chemical complexity is an inherent property of the biomass. In this context, this study aimed to chemically characterize and investigate the potential of three species of Eucalyptus (E. urophylla, E. saligna and E. dunnii) grown in Rio Grande do Sul state for biorefinery purposes. Results of higher heating value for E. urophylla, E. saligna and E.dunnii were similar (19.10, 19.10 and 19.15 MJ/kg respectively). However, cellulose content results for E. saligna (47.5%±2.40) were highlighted, being slightly higher thanthose for E. urophylla (42.75%±1.34) and E. dunnii (43.10%±1.13). Hemicelluloses content for E. urophylla (23.25%±0.78) was slightly superior to the others (20.35%±2.05 for E. saligna and 18.80%±2.40 for E. dunnii). Finally, it was concluded that the analysed species of Eucalyptus have high potential for biorefinery in thermochemical processes. The species E. urophylla has the greatest potential for biorefinery processes using hemicelluloses, and the species E. saligna has greater potential for biorefinery processes utilizing cellulose.

2016 ◽  
Vol 82 (2) ◽  
Author(s):  
. ALHIDAYATULLAH ◽  
Lisdar I SUDIRMAN1 ◽  
Okky Setyawati DHARMAPUTRA

Abstract  Oil palm empty fruit bunches (OPEFB) are the ligno-cellulosic wastes from palm oil processing. They can be used to produce raw materials for value-added products. The purpose of this study was to determine the degradation capacity of JPA wood rot fungi and Trichoderma sp. S2-2 on OPEFB. The 500 g of substrates consisted of 81% of OPEFB, 15% bran, 1.5% lime and 1.5% gypsum were used for growing. The substrates were inoculated with five treatments i.e without isolate (K); with JPA isolate (JPA); with Trichoderma sp. S2-2 (T); with the two isolates (JPA + T); and with JPA isolate and after four weeks of incubation inoculated with Trichoderma sp. S2-2 [(JPA)+T]. All treatments were incubated for eight weeks. The results showed that JPA+T was the best treatment which the two isolates must be inoculated simultaneously for degradation of OPEFB. Lignin and cellulose content on JPA+T treatment respectively were 20.83% and 33.77%. C/N ratio of OPEFB degraded with JPA+T was lower than the C/N ratio of TKKS degraded with Trichoderma harzianum and TKKS degraded with EM4 in previous study. AbstrakTandan kosong kelapa sawit (TKKS) merupakan limbah lignoselulosa dari pengolahan minyak kelapa sawit. TKKS dapat dimanfaatkan untuk memperoleh bahan baku untuk produk bernilai tambah. Tujuan penelitian ini adalah untuk mengetahui kemampuan degradasi jamur pelapuk kayu isolat JPA dan Trichoderma sp. S2-2 pada TKKS. Sebanyak 500 g substrat terdiri dari 81% TKKS, 15% dedak, 1,5% kapur, dan 1,5% gypsum digunakan untuk per-tumbuhan. Substrat diinokulasi dengan lima perlakuan yaitu tanpa isolat (K); dengan isolat JPA (JPA); dengan Trichoderma sp. S2-2 (T); dengan isolat JPA dan setelah empat minggu inkubasi, diinokulasi dengan Trichoderma sp. S2-2 [(JPA+T)]. Semua perlakuan diinkubasi selama delapan minggu. Hasil percobaan menunjukkan bahwa perlakuan JPA+T adalah perlakuan terbaik yaitu kedua isolat tesebut harus diinokulasi secara bersamaan untuk mendegradasi TKKS. Kandungan lignin dan selulosa TKKS dengan  perlakuan  JPA+T   masing-masing  adalah  20,83% dan 33,77%. Rasio C/N TKKS hasil degradasi dengan JPA+T lebih  rendah  daripada  rasio C/N pada TKKS yang didegradasi dengan Trichoderma harzianum dan TKKS yang didegradasi dengan EM4 pada penelitian sebelumnya.


2016 ◽  
Vol 82 (2) ◽  
Author(s):  
. ALHIDAYATULLAH ◽  
Lisdar I SUDIRMAN1 ◽  
Okky Setyawati DHARMAPUTRA

Abstract  Oil palm empty fruit bunches (OPEFB) are the ligno-cellulosic wastes from palm oil processing. They can be used to produce raw materials for value-added products. The purpose of this study was to determine the degradation capacity of JPA wood rot fungi and Trichoderma sp. S2-2 on OPEFB. The 500 g of substrates consisted of 81% of OPEFB, 15% bran, 1.5% lime and 1.5% gypsum were used for growing. The substrates were inoculated with five treatments i.e without isolate (K); with JPA isolate (JPA); with Trichoderma sp. S2-2 (T); with the two isolates (JPA + T); and with JPA isolate and after four weeks of incubation inoculated with Trichoderma sp. S2-2 [(JPA)+T]. All treatments were incubated for eight weeks. The results showed that JPA+T was the best treatment which the two isolates must be inoculated simultaneously for degradation of OPEFB. Lignin and cellulose content on JPA+T treatment respectively were 20.83% and 33.77%. C/N ratio of OPEFB degraded with JPA+T was lower than the C/N ratio of TKKS degraded with Trichoderma harzianum and TKKS degraded with EM4 in previous study. AbstrakTandan kosong kelapa sawit (TKKS) merupakan limbah lignoselulosa dari pengolahan minyak kelapa sawit. TKKS dapat dimanfaatkan untuk memperoleh bahan baku untuk produk bernilai tambah. Tujuan penelitian ini adalah untuk mengetahui kemampuan degradasi jamur pelapuk kayu isolat JPA dan Trichoderma sp. S2-2 pada TKKS. Sebanyak 500 g substrat terdiri dari 81% TKKS, 15% dedak, 1,5% kapur, dan 1,5% gypsum digunakan untuk per-tumbuhan. Substrat diinokulasi dengan lima perlakuan yaitu tanpa isolat (K); dengan isolat JPA (JPA); dengan Trichoderma sp. S2-2 (T); dengan isolat JPA dan setelah empat minggu inkubasi, diinokulasi dengan Trichoderma sp. S2-2 [(JPA+T)]. Semua perlakuan diinkubasi selama delapan minggu. Hasil percobaan menunjukkan bahwa perlakuan JPA+T adalah perlakuan terbaik yaitu kedua isolat tesebut harus diinokulasi secara bersamaan untuk mendegradasi TKKS. Kandungan lignin dan selulosa TKKS dengan  perlakuan  JPA+T   masing-masing  adalah  20,83% dan 33,77%. Rasio C/N TKKS hasil degradasi dengan JPA+T lebih  rendah  daripada  rasio C/N pada TKKS yang didegradasi dengan Trichoderma harzianum dan TKKS yang didegradasi dengan EM4 pada penelitian sebelumnya.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2022 ◽  
Author(s):  
Bide Zhang ◽  
Mohammad Heidari ◽  
Bharat Regmi ◽  
Shakirudeen Salaudeen ◽  
Precious Arku ◽  
...  

Hydrothermal carbonization (HTC) is a useful method to convert wet biomass to value-added products. Fruit waste generated in juice industries is a huge source of moist feedstock for such conversion to produce hydrochar. This paper deals with four types of fruit wastes as feedstocks for HTC; namely, rotten apple (RA), apple chip pomace (ACP), apple juice pomace (AJP), and grape pomace (GP). The operating conditions for HTC processing were 190 °C, 225 °C, and 260 °C for 15 min. For all samples, higher heating value and fixed carbon increased, while volatile matter and oxygen content decreased after HTC. Except for ACP, the ash content of all samples increased after 225 °C. For RA, AJP, and GP, the possible explanation for increased ash content above 225 °C is that the hydrochar increases in porosity after 230 °C. It was observed that an increase in HTC temperature resulted in an increase in the mass yield for RA and GP, which is in contrast with increasing HTC temperature for lignocellulose biomass. Other characterization tests like thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) also showed that the HTC process can be successfully used to convert fruit wastes into valuable products.


2021 ◽  
Vol 10 (1) ◽  
pp. 264-281
Author(s):  
Ao Li ◽  
Dezhong Xu ◽  
Lu Luo ◽  
Yalan Zhou ◽  
Wen Yan ◽  
...  

Abstract The rapid economic growth and environmental concerns have led to high demands on paper and paper-based products in terms of variety, quantity, quality, and specialty. Enhancement and functionalization with additives are constantly required. Moving away from traditional petroleum-based additives, researchers have attempted to use “green” nanoadditives by introducing renewable environmentally friendly nanocellulose. This article studies the functions of nanocellulose as bio-additives (enhancer, retention and filtration reagent, and coating aid) in paper and paper products, and overviews the research development of nanocellulose-based additives and their applications in the paper industry for both efficient production and paper functionalization. The review shows that (1) a variety of nanocellulose-based bioadditives have been reported for various applications in paper and paper-based products, while commercially viable developments are to be advanced; (2) nanocellulose was mostly formulated with other polymer and particles as additives to achieve their synergistic effects; (3) major interests have concentrated on the nanocellulose in the specialty papers as representing more value added products and in the efficient utilization of recycled fibers, which remains most attractive and promising for future development. This report shall provide most useful database information for researchers and industries for paper recycling and enhancement, and paper-based products innovation and application.


Author(s):  
Mridul Umesh ◽  
Thazeem Basheer

Biosynthetic capabilities of microbes have solved several hurdles in the human welfare. Microbes have served and continue to serve as imperial candidates in both production and management strategies. Microbe mediated techniques has emerged as ecofriendly and sustainable alternative to their synthetic counterparts. Fruit based industries produces large volumes of solid and liquid wastes contributing to increase in pollution load. Disposal of these waste not only represent loss of valuable biomass but also leads to substantial increase in Biological Oxygen Demand (BOD) and Chemical Oxygen Demand (COD). However, in spite of their pollution and hazard aspects, in many cases, fruit processing wastes have a promising potential for being chief raw materials for secondary industries. This chapter summarizes microbe mediated fermentative utilization of fruit waste, for the production of value added products like organic acid, single cell protein, bioplastics, enzymes and biogas.


Author(s):  
George G. Songulashvili ◽  
Vladimir Elisashvili ◽  
Michel Penninckx ◽  
Eka Metreveli ◽  
Yitzhak Hadar ◽  
...  

2019 ◽  
Vol 9 (6) ◽  
pp. 668-674 ◽  
Author(s):  
Qili Wang ◽  
Mingquan Yu ◽  
Jiannan Gong ◽  
Fengtao Zhang

As one of the major value-added products of coal processing and utilization, coal pitch coke and coal tar pitch are used as raw materials to prepare high-purity graphite. The structure characteristics and properties were measured by experiments. The results show that the high-purity graphite has excellent physical properties: the skeletal density of 1.81–1.91 g/cm3, the Shore hardness of 45.5–66.6 Hs, the flexural strength of 33.0–46.1 MPa, the compressive strength of 65.6–75.8 MPa, the ash content of 67–181 ppm, the thermal expansion coefficient of 3.71–4.11 × 10–6/°C, and the electrical resistivity of 8.72–12.13 μΩ · m. Consequently, coal-based graphite materials have excellent properties and good application prospects in solar energy industry, which is an effective exploration for the transformation and upgrading of Chinese coal industry.


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4457 ◽  
Author(s):  
Guillermo Díaz-Sainz ◽  
Manuel Alvarez-Guerra ◽  
Angel Irabien

Climate change has become one of the most important challenges in the 21st century, and the electroreduction of CO2 to value-added products has gained increasing importance in recent years. In this context, formic acid or formate are interesting products because they could be used as raw materials in several industries as well as promising fuels in fuel cells. Despite the great number of studies published in the field of the electrocatalytic reduction of CO2 to formic acid/formate working with electrocatalysts of different nature and electrode configurations, few of them are focused on the comparison of different electrocatalyst materials and electrode configurations. Therefore, this work aims at presenting a rigorous and comprehensive comparative assessment of different experimental data previously published after many years of research in different working electrode configurations and electrocatalysts in a continuous mode with a single pass of the inputs through the reactor. Thus, the behavior of the CO2 electroreduction to formate is compared operating with Sn and Bi-based materials under Gas Diffusion Electrodes (GDEs) and Catalyst Coated Membrane Electrodes (CCMEs) configurations. Considering the same electrocatalyst, the use of CCMEs improves the performance in terms of formate concentration and energy consumption. Nevertheless, higher formate rates can be achieved with GDEs because they allow operation at higher current densities of up to 300 mA·cm−2. Bi-based-GDEs outperformed Sn-GDEs in all the figures of merit considered. The comparison also highlights that in CCME configuration, the employ of Bi-based-electrodes enhanced the behavior of the process, increasing the formate concentration by 35% and the Faradaic efficiency by 11%.


2005 ◽  
Vol 7 (3) ◽  
pp. 467-468 ◽  
Author(s):  
George G. Songulashvili ◽  
Vladimir Elisashvili ◽  
Michel Penninckx ◽  
Eka Metreveli ◽  
Yitzhak Hadar ◽  
...  

Author(s):  
Göran Roos

It seems that all industrialised sectors grounded in natural biological raw materials go through the same cycle of commencing with low-value-added products. As scientific and technical knowledge develops, this opens the pathway towards higher value-added activities, which is taken by some part of the existing firms in the sector and also by other firms outside the original sector. There may be insights to be had for an industry like the macroalgae industry that is in the early phases of this development by looking at insights from an industry that is in later phases having gone through many cycles. This chapter aims to very briefly make some illustrations from the development in the forestry-based sector that might carry some insights for the emerging macroalgae sector.


Sign in / Sign up

Export Citation Format

Share Document