scholarly journals Aquaporin 2 gene variations, risk of venous thrombosis and plasma levels of von Willebrand factor and factor VIII

Haematologica ◽  
2008 ◽  
Vol 93 (6) ◽  
pp. 959-960 ◽  
Author(s):  
A. Y. Nossent ◽  
H. L. Vos ◽  
F. R. Rosendaal ◽  
R. M. Bertina ◽  
J. C.J. Eikenboom
Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1749-1749
Author(s):  
Anne Yael Nossent ◽  
Johanne H. Ellenbroek ◽  
Marijke Frolich ◽  
Frits R. Rosendaal ◽  
Rogier M. Bertina ◽  
...  

Abstract High levels of von Willebrand factor (VWF) and factor VIII (FVIII) are a risk factor for thrombosis. Determinants of high VWF and FVIII levels are poorly understood. Secretion of VWF from endothelial storage pools is regulated by vasopressin type-2 receptor (V2R). Previously, we have shown that a V2R variant, which has increased binding affinity for its ligand vasopressin (AVP), is associated with increased levels of VWF and FVIII1. Nephrogenic Diabetes Insipidus (NDI) is a disorder characterized by renal insensitivity to AVP, caused by mutations in the genes encoding V2R or the aquaporin 2 water channel (AQP2). AQP2 expression is enhanced by stimulation of V2R. Patients with NDI are unable to concentrate their pre-urine. We hypothesized that carriers of AQP2 mutations compensate excess fluid loss by up-regulating AVP release and V2R expression, resulting in increased VWF and FVIII secretion. To test this hypothesis, we set up the Factor Eight in Nephrogenic Diabetus Insipidus study (FENDI), which includes 13 NDI families: 14 NDI patients (12 V2R- and 2 AQP2-linked), 14 carriers (9 V2R- and 5 AQP2-linked) and 25 unaffected family members, as well as 48 unrelated healthy individuals. In addition, we looked at effects of common AQP2 gene variations in a case-control study on venous thrombosis, the Leiden Thrombophilia Study (LETS), which consists of 474 patients with a first deep vein thrombosis and 474 healthy controls, sex and age matched to the patients. In the FENDI, no differences were observed between NDI patients, carriers and unaffected individuals in markers for fluid homeostasis such as hematocrite, serum osmolality and blood pressure. AVP reached detectable levels in all carriers of AQP2 mutations, compared to 27% and 56% in unrelated and related unaffected individuals, respectively. AVP levels, were, when detectable, elevated in all patients and carriers. VWF propeptide, a measure of the VWF secretion rate, VWF antigen and FVIII activity were also highest in carriers of AQP2 mutations. In the LETS, we sequenced a 6.6 kb long genomic region around the AQP2 gene in 25 selected individuals. We identified 18 single nucleotide polymorphisms (SNPs), of which 16 were genotyped in the entire LETS. Although reliable haplotypes could not be formed, due to recombination, the SNPs were linked within 5 clusters. In three of these clusters, up to 2.5-fold increases in thrombosis risk were observed. In these same clusters we observed associations of the AQP2 SNPs with arterial blood pressure. However, none of the AQP2 SNPs were associated with VWF or FVIII levels in healthy controls of the LETS. In conclusion, increased AVP levels in carriers of NDI-causing AQP2 mutations appear associated with increased VWF secretion. Furthermore, in the LETS, common AQP2 gene variations are associated with the risk of venous thrombosis.


2008 ◽  
Vol 1 ◽  
pp. CCRep.S737
Author(s):  
Mari Terashima ◽  
Hiroshi Kataoka ◽  
Hirosei Horikawa ◽  
Hiroyuki Nakagawa ◽  
Toshiaki Taoka ◽  
...  

Background and purpose Previous studies have linked procoagulant factor VIII (F VIII) to an increased risk of venous thrombosis, whereas the relation between plasma von Willebrand factor (VWF) and venous thrombosis remains poorly understood. Elevated VWF levels are frequently found in patients with cerebral sinus and venous thrombosis (CSVT), always in association with high F VIII levels. We describe a patient with CSVT accompanied by elevated VWF levels without high F VIII levels. Case description A 23-year-old healthy man who had headache noticed difficulty in moving the right hand. On the following day, he lost consciousness and had partial seizures of the right hand. After regaining consciousness, weakness of the right extremities developed. The cranial angiogram confirmed occlusion of the superior sagittal sinus. The levels of VWF and F VIII were 238% and 101.9 IU/dl, respectively. We performed balloon percutaneous transluminal angioplasty and mechanical thrombectomy, leading to successful recanalization of the intracranial sinuses. VWF levels were decreased along with radiographic improvement, independently of F VIII. Conclusion VWF may contribute to CSVT and that inhibition of VWF activity potentially has a role in the future treatment of pathological conditions related to venous thrombosis.


Circulation ◽  
2019 ◽  
Vol 139 (5) ◽  
pp. 620-635 ◽  
Author(s):  
Maria Sabater-Lleal ◽  
Jennifer E. Huffman ◽  
Paul S. de Vries ◽  
Jonathan Marten ◽  
Michael A. Mastrangelo ◽  
...  

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4228-4228
Author(s):  
Silvia Albánez ◽  
Alison Michels ◽  
Kate Sponagle ◽  
David Lillicrap

Abstract Background: Aging is associated with a state of hypercoagulability, as the result of increased concentrations of plasma coagulation proteins. Plasma levels of Factor VIII (FVIII) and von Willebrand factor (VWF) increase with age in humans, but the potential contribution of increases in gene expression with age has not been studied. These two proteins circulate in a non-covalent complex and are cleared together from plasma, hence, a reduction in the expression of their clearance receptors is also a possible pathogenetic explanation. In contrast, plasma levels of ADAMTS13 have been shown to be reduced in later life in humans, but again the mechanism responsible for this age-related pathophysiology is currently unknown. In this study, we utilized a mouse model in which age-related changes in plasma levels of FVIII, VWF and ADAMTS13 were initially documented. Here, we evaluated age-related changes in the gene expression of VWF, FVIII, ADAMTS13 and the clearance receptors low-density lipoprotein receptor-related protein 1 (LRP1), scavenger receptor class A member 5 (SCARA5) and Stabilin-2 (Stab2). Methods: Liver, spleen and lung samples were collected from normal C57BL/6 mice at 9- (n=10), 55- (n=8) and 97-weeks of age (n=15). Also, liver and spleen samples were collected at 3-weeks of age (n=5). Total mRNA was isolated from the tissues and gene expression analysis performed through qRT-PCR by a two-step relative quantification against mouse GAPDH. Expression of murine Factor IX (f9) and Protein C (proc) genes were also measured as positive and negative controls, as the developmental expression of these genes has been extensively studied. The 9-weeks old mice were used as a reference, and expression levels in this group were set as 1. Results were expressed as the fold change median and 95% CI from the 9 week standard group. Data was log10 transformed and compared with a Mann-Whitney test. Additionally, plasma levels of murine VWF, FVIII and ADAMTS13 were measured through ELISA, chromogenic assays and ELISA-based activity assays, respectively, in samples obtained at the same time-points examined for gene expression. Results: Levels of VWF in plasma showed significant increases with age (p<0.0001), reaching a 2-fold increase by 97-weeks. Expression levels increased gradually with age in all three tissues evaluated, reaching a 1.4-fold increase in the lungs (p=0.008), 1.8-fold in the spleen (p=0.01) and 10.3-fold in the liver (p<0.0001) of 97-weeks old mice. When FVIII plasma levels were measured, a similar age-related increase was observed (p<0.0001). Expression levels increased significantly with age in the lungs by 2-fold (1.53-2.68, p=0.002), but no specific age-related changes were observed in liver and spleen. Plasma levels of mouse ADAMTS13 activity showed an opposite pattern to what has been reported for the human protein, with an age-related increase (p<0.0001). When ADAMTS13 gene expression was analyzed in the liver, higher levels were observed in the 3-week old group [1.32 (1.25-1.41), p=0.04], but no significant changes in expression occurred at later time points. Finally, gene expression analysis of LRP1, SCARA5 and Stab2 genes was performed in liver and spleen, the two main organs involved in VWF/FVIII clearance. Expression of these three receptor genes was significantly reduced in both tissues at 3-weeks (<0.04 fold for all estimates). Expression of LRP1 in the liver was an exception to this pattern, with a level that was similar to the 9-week old mice [1.44 (0.96-2.17), p=0.77]. Interestingly, no Stab2 expression was detected in the liver at any point. With aging, no significant changes occurred in SCARA5 and LRP1 gene expression that could be associated with higher plasma levels of VWF/FVIII. However, splenic Stab2 expression significantly decreased with age, reaching a 0.18-fold (0.13-0.25, p=0.02) reduction in the 97-weeks old spleen samples. The positive control gene used (f9) showed no increases in expression with age [1.11 (1.00-1.23), p=0.60], possibly due to strain differences with reported studies, while the negative control gene proc showed no changes [0.87 (0.82-0.93), p=0.28], as expected. Conclusions: Changes in gene expression with increasing age appear to be contributing to the increases in VWF and FVIII plasma levels. Our studies have shown age-related increases in expression of the VWF and FVIII genes and reduced expression of the clearance receptor Stabilin-2. Disclosures No relevant conflicts of interest to declare.


Circulation ◽  
2010 ◽  
Vol 121 (12) ◽  
pp. 1382-1392 ◽  
Author(s):  
Nicholas L. Smith ◽  
Ming-Huei Chen ◽  
Abbas Dehghan ◽  
David P. Strachan ◽  
Saonli Basu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document