Interleukin-7 promotes survival and cell cycle progression of T-cell acute lymphoblastic leukemia cells by down-regulating the cyclin-dependent kinase inhibitor p27kip1

Blood ◽  
2001 ◽  
Vol 98 (5) ◽  
pp. 1524-1531 ◽  
Author(s):  
Joao T. Barata ◽  
Angelo A. Cardoso ◽  
Lee M. Nadler ◽  
Vassiliki A. Boussiotis

In normal T-cell development interleukin-7 (IL-7) functions as an antiapoptotic factor by regulating bcl-2 expression in immature thymocytes and mature T cells. Similar to what occurs in normal immature thymocytes, prevention of spontaneous apoptosis by IL-7 in precursor T-cell acute lymphoblastic leukemia (T-ALL) cells correlates with up-regulation of bcl-2. IL-7 is also implicated in leukemogenesis because IL-7 transgenic mice develop lymphoid malignancies, suggesting that IL-7 may regulate the generation and expansion of malignant cells. This study shows that in the presence of IL-7, T-ALL cells not only up-regulated bcl-2 expression and escaped apoptosis but also progressed in the cell cycle, resulting in sequential induction of cyclin D2 and cyclin A. Down-regulation of p27kip1 was mandatory for IL-7–mediated cell cycle progression and temporally coincided with activation of cyclin-dependent kinase (cdk)4 and cdk2 and hyperphosphorylation of Rb. Strikingly, forced expression of p27kip1 in T-ALL cells not only prevented cell cycle progression but also reversed IL-7–mediated up-regulation of bcl-2 and promotion of viability. These results show for the first time that a causative link between IL-7–mediated proliferation and p27kip1 down-regulation exists in malignant T cells. Moreover, these results suggest that p27kip1 may function as a tumor suppressor gene not only because it is a negative regulator of cell cycle progression but also because it is associated with induction of apoptosis of primary malignant cells.

2004 ◽  
Vol 200 (5) ◽  
pp. 659-669 ◽  
Author(s):  
Joao T. Barata ◽  
Ana Silva ◽  
Joana G. Brandao ◽  
Lee M. Nadler ◽  
Angelo A. Cardoso ◽  
...  

Interleukin (IL)-7 is essential for normal T cell development. Previously, we have shown that IL-7 increases viability and proliferation of T cell acute lymphoblastic leukemia (T-ALL) cells by up-regulating Bcl-2 and down-regulating the cyclin-dependent kinase inhibitor p27kip1. Here, we examined the signaling pathways via which IL-7 mediates these effects. We investigated mitogen-activated protein kinase (MEK)–extracellular signal-regulated kinase (Erk) and phosphatidylinositol-3-kinase (PI3K)–Akt (protein kinase B) pathways, which have active roles in T cell expansion and have been implicated in tumorigenesis. IL-7 induced activation of the MEK–Erk pathway in T-ALL cells; however, inhibition of the MEK–Erk pathway by the use of the cell-permeable inhibitor PD98059, did not affect IL-7–mediated viability or cell cycle progression of leukemic cells. IL-7 induced PI3K-dependent phosphorylation of Akt and its downstream targets GSK-3, FOXO1, and FOXO3a. PI3K activation was mandatory for IL-7–mediated Bcl-2 up-regulation, p27kip1 down-regulation, Rb hyperphosphorylation, and consequent viability and cell cycle progression of T-ALL cells. PI3K signaling was also required for cell size increase, up-regulation of CD71, expression of the glucose transporter Glut1, uptake of glucose, and maintenance of mitochondrial integrity. Our results implicate PI3K as a major effector of IL-7–induced viability, metabolic activation, growth and proliferation of T-ALL cells, and suggest that PI3K and its downstream effectors may represent molecular targets for therapeutic intervention in T-ALL.


Blood ◽  
2011 ◽  
Vol 117 (10) ◽  
pp. 2901-2909 ◽  
Author(s):  
Renée M. Demarest ◽  
Nadia Dahmane ◽  
Anthony J. Capobianco

Abstract T-cell acute lymphoblastic leukemia (T-ALL) is a hematologic neoplasm characterized by malignant expansion of immature T cells. Activated NOTCH (NotchIC) and c-MYC expression are increased in a large percentage of human T-ALL tumors. Furthermore, c-MYC has been shown to be a NOTCH target gene. Although activating mutations of Notch have been found in human T-ALL tumors, there is little evidence that the c-MYC locus is altered in this neoplasm. It was previously demonstrated that Notch and c-Myc–regulated genes have a broadly overlapping profile, including genes involved in cell cycle progression and metabolism. Given that Notch and c-Myc appear to function similarly in T-ALL, we sought to determine whether these two oncogenes could substitute for each other in T-ALL tumors. Here we report that NOTCHIC is able to maintain T-ALL tumors formed in the presence of exogenous NOTCHIC and c-MYC when exogenous c-MYC expression is extinguished. In contrast, c-MYC is incapable of maintaining these tumors in the absence of NOTCHIC. We propose that failure of c-MYC to maintain these tumors is the result of p53-mediated apoptosis. These results demonstrate that T-ALL maintenance is dependent on NOTCHIC, but not c-MYC, demonstrating that NOTCH is oncogenic dominant in T-ALL tumors.


2021 ◽  
Vol 14 (5) ◽  
pp. 443
Author(s):  
Inge Lodewijckx ◽  
Jan Cools

The cytokine interleukin-7 (IL-7) and its receptor are critical for lymphoid cell development. The loss of IL-7 signaling causes severe combined immunodeficiency, whereas gain-of-function alterations in the pathway contribute to malignant transformation of lymphocytes. Binding of IL-7 to the IL-7 receptor results in the activation of the JAK-STAT, PI3K-AKT and Ras-MAPK pathways, each contributing to survival, cell cycle progression, proliferation and differentiation. Here, we discuss the role of deregulated IL-7 signaling in lymphoid malignancies of B- and T-cell origin. Especially in T-cell leukemia, more specifically in T-cell acute lymphoblastic leukemia and T-cell prolymphocytic leukemia, a high frequency of mutations in components of the IL-7 signaling pathway are found, including alterations in IL7R, IL2RG, JAK1, JAK3, STAT5B, PTPN2, PTPRC and DNM2 genes.


2018 ◽  
Vol 2 (17) ◽  
pp. 2199-2213 ◽  
Author(s):  
Daniel Ribeiro ◽  
Alice Melão ◽  
Ruben van Boxtel ◽  
Cristina I. Santos ◽  
Ana Silva ◽  
...  

Key Points STAT5 is required for IL-7–mediated proliferation and viability, but it does not regulate Bcl-2 downstream from IL-7 in T-ALL cells. PIM1 is required for IL-7-induced leukemia cell cycle progression and proliferation and may be a therapeutic target for IL-7-reliant T-ALLs.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4400-4400
Author(s):  
Miyoung Lee ◽  
Aleksandra Filipovic ◽  
Curtis J Henry

Abstract Due to improvements in treatment strategies, the five-year event-free survival rate for pediatric patients with acute lymphoblastic leukemia (ALL) is 90%. However, patients with relapse and refractory disease fare much worse with 5-year overall survival rates of less than 50% in patients receiving chimeric antigen receptor T-cell therapy and fewer than 20% of patients surviving after receiving hematopoietic stem cell transplantation. These dismal outcomes for patients with relapse and refractory disease highlight the need for novel treatment regimens when current therapeutic options are exhausted. T-cell acute lymphoblastic leukemia (T-ALL) accounts for around 15% and 25% of ALL cases in pediatric and adult populations, respectively. This disease is driven by various molecular changes including alterations in the epigenome due, in part, to deregulated epigenetic machinery such as the polycomb repressive complex 2 (PRC2). Despite this observation, and ongoing clinical trials determining the utility of epigenetic drugs for treating various hematological malignancies, the role of the epigenome in T-ALL pathogenesis and the efficacy of epigenetic modifying drugs as treatments for this disease is heavily understudied. Galectins are members of s-type lectins which promote diverse biological processes including adhesion, signaling, and immunosuppression. Galectin-9 (Gal-9) is an emerging therapeutic target for solid cancers and hematological malignancies given that its presence is associated with poor outcomes for multiple cancers. In unpublished studies, we have found that Gal-9 is expressed on the surface of multiple human ALL subtypes with the highest basal surface expression found on T-ALL cells. To determine how this lectin impacts the function of human T-ALL cells, we treated leukemia cells with immunoglobulin control (Ig Ctrl) or anti-Gal-9 antibody (αGal-9Ab) and assessed the impact of treatment on cell cycle progression, DNA damage, and apoptosis. We used two αGal-9Ab clones for these experiments, a commercially available antibody and LYT-200 (a proprietary antibody in Phase I clinical trials for solid tumors from PureTech Health). Treatment with the commercially available antibody, but not Ctrl Ig, increased histone 3 trimethylation (H3K2me 3/H3K4me 3) with accompanying decreases in EZH2 and RING1A protein expression in human T-ALL cell lines. Antibody-induced epigenetic changes also promoted cell cycle progression (G2M transition), DNA damage, and extensive apoptosis (>90%) in multiple human T-ALL cell lines (n>6). Importantly, LYT-200 single-agent treatment also induced cell death in human T-ALL cells, demonstrating that blocking multiple epitopes on Gal-9 is sufficient to induce T-ALL cytotoxicity. These results highlight a previously unreported role for Galectin-9 in the epigenetic regulation and survival of human T-ALL cells. Given our observations that epigenome stability is critical for the survival of human T-ALL cells, we next sought to determine if the combination of αGal-9Ab treatment and epigenetic modifying drugs would further enhance the cytotoxicity of human T-ALL cells. We tested the combination of αGal-9Ab treatment and multiple drugs targeting either histone acetylation, methylation, or phosphorylation. Of these, we found that combining αGal-9Ab and GDC-0575 (a CHK1 inhibitor) resulted in extensive DNA damage and cytotoxicity (>98%). Mechanistically, we found αGal-9Ab treatment induces DNA damage in multiple human T-ALL lines, which leads to CHK1 activation. Given that GDC-0575 inhibits CHK1 activity, and CHK1 is a master regulator of the DNA damage response, we predict that the enhanced cytotoxicity of human T-ALL cells treated with the combination therapy results from the inability to effectively repair DNA damage induced by αGal-9Ab treatment. Our findings describe a previously unrecognized role for Gal-9 in T-ALL pathogenesis and demonstrates the cytotoxic effects αGal-9Ab treatment (including LYT-200) in preclinical models of human T-ALL. Disclosures Lee: PureTech Health: Research Funding. Filipovic: PureTech Health: Research Funding. Henry: PureTech Health: Research Funding.


2021 ◽  
Vol 7 (23) ◽  
pp. eabg0007
Author(s):  
Deniz Pirincci Ercan ◽  
Florine Chrétien ◽  
Probir Chakravarty ◽  
Helen R. Flynn ◽  
Ambrosius P. Snijders ◽  
...  

Two models have been put forward for cyclin-dependent kinase (Cdk) control of the cell cycle. In the qualitative model, cell cycle events are ordered by distinct substrate specificities of successive cyclin waves. Alternatively, in the quantitative model, the gradual rise of Cdk activity from G1 phase to mitosis leads to ordered substrate phosphorylation at sequential thresholds. Here, we study the relative contributions of qualitative and quantitative Cdk control in Saccharomyces cerevisiae. All S phase and mitotic cyclins can be replaced by a single mitotic cyclin, albeit at the cost of reduced fitness. A single cyclin can also replace all G1 cyclins to support ordered cell cycle progression, fulfilling key predictions of the quantitative model. However, single-cyclin cells fail to polarize or grow buds and thus cannot survive. Our results suggest that budding yeast has become dependent on G1 cyclin specificity to couple cell cycle progression to essential morphogenetic events.


2001 ◽  
Vol 114 (10) ◽  
pp. 1811-1820 ◽  
Author(s):  
M.E. Miller ◽  
F.R. Cross

Cyclin-dependent kinase (CDK) activity is essential for eukaryotic cell cycle events. Multiple cyclins activate CDKs in all eukaryotes, but it is unclear whether multiple cyclins are really required for cell cycle progression. It has been argued that cyclins may predominantly act as simple enzymatic activators of CDKs; in opposition to this idea, it has been argued that cyclins might target the activated CDK to particular substrates or inhibitors. Such targeting might occur through a combination of factors, including temporal expression, protein associations, and subcellular localization.


Sign in / Sign up

Export Citation Format

Share Document