scholarly journals Combinatorial Inhibition of Galectin-9 and CHK1 Represent a Novel Treatment Strategy for T-Cell Acute Lymphoblastic Leukemia

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4400-4400
Author(s):  
Miyoung Lee ◽  
Aleksandra Filipovic ◽  
Curtis J Henry

Abstract Due to improvements in treatment strategies, the five-year event-free survival rate for pediatric patients with acute lymphoblastic leukemia (ALL) is 90%. However, patients with relapse and refractory disease fare much worse with 5-year overall survival rates of less than 50% in patients receiving chimeric antigen receptor T-cell therapy and fewer than 20% of patients surviving after receiving hematopoietic stem cell transplantation. These dismal outcomes for patients with relapse and refractory disease highlight the need for novel treatment regimens when current therapeutic options are exhausted. T-cell acute lymphoblastic leukemia (T-ALL) accounts for around 15% and 25% of ALL cases in pediatric and adult populations, respectively. This disease is driven by various molecular changes including alterations in the epigenome due, in part, to deregulated epigenetic machinery such as the polycomb repressive complex 2 (PRC2). Despite this observation, and ongoing clinical trials determining the utility of epigenetic drugs for treating various hematological malignancies, the role of the epigenome in T-ALL pathogenesis and the efficacy of epigenetic modifying drugs as treatments for this disease is heavily understudied. Galectins are members of s-type lectins which promote diverse biological processes including adhesion, signaling, and immunosuppression. Galectin-9 (Gal-9) is an emerging therapeutic target for solid cancers and hematological malignancies given that its presence is associated with poor outcomes for multiple cancers. In unpublished studies, we have found that Gal-9 is expressed on the surface of multiple human ALL subtypes with the highest basal surface expression found on T-ALL cells. To determine how this lectin impacts the function of human T-ALL cells, we treated leukemia cells with immunoglobulin control (Ig Ctrl) or anti-Gal-9 antibody (αGal-9Ab) and assessed the impact of treatment on cell cycle progression, DNA damage, and apoptosis. We used two αGal-9Ab clones for these experiments, a commercially available antibody and LYT-200 (a proprietary antibody in Phase I clinical trials for solid tumors from PureTech Health). Treatment with the commercially available antibody, but not Ctrl Ig, increased histone 3 trimethylation (H3K2me 3/H3K4me 3) with accompanying decreases in EZH2 and RING1A protein expression in human T-ALL cell lines. Antibody-induced epigenetic changes also promoted cell cycle progression (G2M transition), DNA damage, and extensive apoptosis (>90%) in multiple human T-ALL cell lines (n>6). Importantly, LYT-200 single-agent treatment also induced cell death in human T-ALL cells, demonstrating that blocking multiple epitopes on Gal-9 is sufficient to induce T-ALL cytotoxicity. These results highlight a previously unreported role for Galectin-9 in the epigenetic regulation and survival of human T-ALL cells. Given our observations that epigenome stability is critical for the survival of human T-ALL cells, we next sought to determine if the combination of αGal-9Ab treatment and epigenetic modifying drugs would further enhance the cytotoxicity of human T-ALL cells. We tested the combination of αGal-9Ab treatment and multiple drugs targeting either histone acetylation, methylation, or phosphorylation. Of these, we found that combining αGal-9Ab and GDC-0575 (a CHK1 inhibitor) resulted in extensive DNA damage and cytotoxicity (>98%). Mechanistically, we found αGal-9Ab treatment induces DNA damage in multiple human T-ALL lines, which leads to CHK1 activation. Given that GDC-0575 inhibits CHK1 activity, and CHK1 is a master regulator of the DNA damage response, we predict that the enhanced cytotoxicity of human T-ALL cells treated with the combination therapy results from the inability to effectively repair DNA damage induced by αGal-9Ab treatment. Our findings describe a previously unrecognized role for Gal-9 in T-ALL pathogenesis and demonstrates the cytotoxic effects αGal-9Ab treatment (including LYT-200) in preclinical models of human T-ALL. Disclosures Lee: PureTech Health: Research Funding. Filipovic: PureTech Health: Research Funding. Henry: PureTech Health: Research Funding.

2004 ◽  
Vol 200 (5) ◽  
pp. 659-669 ◽  
Author(s):  
Joao T. Barata ◽  
Ana Silva ◽  
Joana G. Brandao ◽  
Lee M. Nadler ◽  
Angelo A. Cardoso ◽  
...  

Interleukin (IL)-7 is essential for normal T cell development. Previously, we have shown that IL-7 increases viability and proliferation of T cell acute lymphoblastic leukemia (T-ALL) cells by up-regulating Bcl-2 and down-regulating the cyclin-dependent kinase inhibitor p27kip1. Here, we examined the signaling pathways via which IL-7 mediates these effects. We investigated mitogen-activated protein kinase (MEK)–extracellular signal-regulated kinase (Erk) and phosphatidylinositol-3-kinase (PI3K)–Akt (protein kinase B) pathways, which have active roles in T cell expansion and have been implicated in tumorigenesis. IL-7 induced activation of the MEK–Erk pathway in T-ALL cells; however, inhibition of the MEK–Erk pathway by the use of the cell-permeable inhibitor PD98059, did not affect IL-7–mediated viability or cell cycle progression of leukemic cells. IL-7 induced PI3K-dependent phosphorylation of Akt and its downstream targets GSK-3, FOXO1, and FOXO3a. PI3K activation was mandatory for IL-7–mediated Bcl-2 up-regulation, p27kip1 down-regulation, Rb hyperphosphorylation, and consequent viability and cell cycle progression of T-ALL cells. PI3K signaling was also required for cell size increase, up-regulation of CD71, expression of the glucose transporter Glut1, uptake of glucose, and maintenance of mitochondrial integrity. Our results implicate PI3K as a major effector of IL-7–induced viability, metabolic activation, growth and proliferation of T-ALL cells, and suggest that PI3K and its downstream effectors may represent molecular targets for therapeutic intervention in T-ALL.


Blood ◽  
2011 ◽  
Vol 117 (10) ◽  
pp. 2901-2909 ◽  
Author(s):  
Renée M. Demarest ◽  
Nadia Dahmane ◽  
Anthony J. Capobianco

Abstract T-cell acute lymphoblastic leukemia (T-ALL) is a hematologic neoplasm characterized by malignant expansion of immature T cells. Activated NOTCH (NotchIC) and c-MYC expression are increased in a large percentage of human T-ALL tumors. Furthermore, c-MYC has been shown to be a NOTCH target gene. Although activating mutations of Notch have been found in human T-ALL tumors, there is little evidence that the c-MYC locus is altered in this neoplasm. It was previously demonstrated that Notch and c-Myc–regulated genes have a broadly overlapping profile, including genes involved in cell cycle progression and metabolism. Given that Notch and c-Myc appear to function similarly in T-ALL, we sought to determine whether these two oncogenes could substitute for each other in T-ALL tumors. Here we report that NOTCHIC is able to maintain T-ALL tumors formed in the presence of exogenous NOTCHIC and c-MYC when exogenous c-MYC expression is extinguished. In contrast, c-MYC is incapable of maintaining these tumors in the absence of NOTCHIC. We propose that failure of c-MYC to maintain these tumors is the result of p53-mediated apoptosis. These results demonstrate that T-ALL maintenance is dependent on NOTCHIC, but not c-MYC, demonstrating that NOTCH is oncogenic dominant in T-ALL tumors.


Blood ◽  
2001 ◽  
Vol 98 (5) ◽  
pp. 1524-1531 ◽  
Author(s):  
Joao T. Barata ◽  
Angelo A. Cardoso ◽  
Lee M. Nadler ◽  
Vassiliki A. Boussiotis

In normal T-cell development interleukin-7 (IL-7) functions as an antiapoptotic factor by regulating bcl-2 expression in immature thymocytes and mature T cells. Similar to what occurs in normal immature thymocytes, prevention of spontaneous apoptosis by IL-7 in precursor T-cell acute lymphoblastic leukemia (T-ALL) cells correlates with up-regulation of bcl-2. IL-7 is also implicated in leukemogenesis because IL-7 transgenic mice develop lymphoid malignancies, suggesting that IL-7 may regulate the generation and expansion of malignant cells. This study shows that in the presence of IL-7, T-ALL cells not only up-regulated bcl-2 expression and escaped apoptosis but also progressed in the cell cycle, resulting in sequential induction of cyclin D2 and cyclin A. Down-regulation of p27kip1 was mandatory for IL-7–mediated cell cycle progression and temporally coincided with activation of cyclin-dependent kinase (cdk)4 and cdk2 and hyperphosphorylation of Rb. Strikingly, forced expression of p27kip1 in T-ALL cells not only prevented cell cycle progression but also reversed IL-7–mediated up-regulation of bcl-2 and promotion of viability. These results show for the first time that a causative link between IL-7–mediated proliferation and p27kip1 down-regulation exists in malignant T cells. Moreover, these results suggest that p27kip1 may function as a tumor suppressor gene not only because it is a negative regulator of cell cycle progression but also because it is associated with induction of apoptosis of primary malignant cells.


Blood ◽  
2015 ◽  
Vol 126 (10) ◽  
pp. 1193-1202 ◽  
Author(s):  
Donya Moradi Manesh ◽  
Jad El-Hoss ◽  
Kathryn Evans ◽  
Jennifer Richmond ◽  
Cara E. Toscan ◽  
...  

Key Points PR-104 represents a potential novel treatment for relapsed/refractory T-ALL. AKR1C3 expression could be used as a biomarker to select patients who may respond to PR-104 in prospective clinical trials.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1118
Author(s):  
Valentina Bardelli ◽  
Silvia Arniani ◽  
Valentina Pierini ◽  
Danika Di Giacomo ◽  
Tiziana Pierini ◽  
...  

T-cell acute lymphoblastic leukemias (T-ALL) are immature lymphoid tumors localizing in the bone marrow, mediastinum, central nervous system, and lymphoid organs. They account for 10–15% of pediatric and about 25% of adult acute lymphoblastic leukemia (ALL) cases. It is a widely heterogeneous disease that is caused by the co-occurrence of multiple genetic abnormalities, which are acquired over time, and once accumulated, lead to full-blown leukemia. Recurrently affected genes deregulate pivotal cell processes, such as cycling (CDKN1B, RB1, TP53), signaling transduction (RAS pathway, IL7R/JAK/STAT, PI3K/AKT), epigenetics (PRC2 members, PHF6), and protein translation (RPL10, CNOT3). A remarkable role is played by NOTCH1 and CDKN2A, as they are altered in more than half of the cases. The activation of the NOTCH1 signaling affects thymocyte specification and development, while CDKN2A haploinsufficiency/inactivation, promotes cell cycle progression. Among recurrently involved oncogenes, a major role is exerted by T-cell-specific transcription factors, whose deregulated expression interferes with normal thymocyte development and causes a stage-specific differentiation arrest. Hence, TAL and/or LMO deregulation is typical of T-ALL with a mature phenotype (sCD3 positive) that of TLX1, NKX2-1, or TLX3, of cortical T-ALL (CD1a positive); HOXA and MEF2C are instead over-expressed in subsets of Early T-cell Precursor (ETP; immature phenotype) and early T-ALL. Among immature T-ALL, genomic alterations, that cause BCL11B transcriptional deregulation, identify a specific genetic subgroup. Although comprehensive cytogenetic and molecular studies have shed light on the genetic background of T-ALL, biomarkers are not currently adopted in the diagnostic workup of T-ALL, and only a limited number of studies have assessed their clinical implications. In this review, we will focus on recurrent T-ALL abnormalities that define specific leukemogenic pathways and on oncogenes/oncosuppressors that can serve as diagnostic biomarkers. Moreover, we will discuss how the complex genomic profile of T-ALL can be used to address and test innovative/targeted therapeutic options.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 716-716
Author(s):  
Sujan Piya ◽  
Hong Mu ◽  
Seemana Bhattacharya ◽  
Teresa McQueen ◽  
Richard E Davis ◽  
...  

Abstract Background: Salvage options for patients with relapsed T cell acute lymphoblastic leukemia (T-ALL) are limited, with less than 25% of these patients achieving second remission 1, 2. 70% of T-ALL cases have activating mutations of the NOTCH1 pathway, which transcriptionally activates MYC by binding to its `superenhancer' region 3, 4. Other deregulated oncogenic pathways in T-ALL include PI3K/Akt, the anti-apoptotic Bcl-2 family, and CDKN2A/2B cell cycle regulators 5, 6. The NOTCH1-MYC regulatory circuit is an attractive therapeutic target, but clinical development of gamma-secretase inhibitors (GSI) to target NOTCH1 has been limited by 'on target' toxicities. A better target may be BRD4, a critical component of superenhancer complexes that binds to acetylated histone (3 and 4) and drives NOTCH1 mediated MYC transcription7. ARV-825 is a hetero-bifunctional PROteolysis TArgeting Chimera (PROTAC) that has 3 components: a thienodiazepine-based BRD4 ligand, a linker arm, and a cereblon-binding ligand. ARV-825 recruits BRD4 to the E3 ubiquitin ligase cereblon and leads to efficient and sustained degradation of BRD4, resulting in down-regulation of MYC. Methods: We investigated the effectiveness of ARV-825 against T-ALL cell lines, including GSI-resistant lines. Since microenvironmental signals are critical for the survival of T-ALL, we specifically tested the impact of BRD4 degradation on CD44/CD44v, which integrates cell-extrinsic microenvironmental signals and is part of cysteine transporter that maintains low intra-cellular reactive oxygen species (ROS), necessary for T-ALL survival and the persistence of disease. We also examined the anti-leukemic effect of ARV-825 in a T-ALL patient-derived xenograft (PDX) mouse model of disseminated leukemia with a constitutively active NOTCH1 mutation. Results: The IC50s for all tested T-ALL cell lines at 72 hours were in the low nanomolar range (< 50 nM). ARV-825 leads to sustained degradation of BRD4 and down-regulation of its transcriptional targets MYC, Bcl-2 and Bcl-XL and inhibits cell proliferation and induces apoptosis in GSI-sensitive (HPB-ALL, KOPT1) and GSI-resistant (MOLT4, SUPT1) cell lines. Mass cytometry based proteomic analysis (CyTOF) and immunoblotting showed that ARV-825 down-regulated cell intrinsic oncogenic molecules: transcription factors Myc and NFkB, cell cycle regulator CDK6, activated PI3K/Akt, and anti-apoptotic Bcl2 family proteins. In addition ARV-825 down regulated two key molecules involved in leukemia-stroma interaction; CD44 (Fig. 1), and CD98, a component of amino acid transporters xCT, LAT1 and 2, both essential in regulation of oxidative stress. Quantitative PCR and immunoblotting analysis confirmed the transcriptional down regulation of total CD44 and CD44 variants 8-10 (2-fold change treated vs . untreated). As a functional correlate of down-regulation of CD98/CD44/CD44v, flow cytometry confirmed increased intracellular ROS generation (Fig. 2). Finally, in a PDX mouse model of human T-ALL, ARV-825 treatment resulted in lower leukemia burden (confirmed by flow cytometry for human CD45+ cells in bone marrow) and better survival compared to vehicle-treated control mice (p=0.002) (Fig.3). Reference: 1. Marks DI, Rowntree C. Management of adults with T-cell lymphoblastic leukemia. Blood 2017; 129(9): 1134-1142. 2. Litzow MR, Ferrando AA. How I treat T-cell acute lymphoblastic leukemia in adults. Blood 2015; 126(7): 833-41. 3. Sanchez-Martin M, Ferrando A. The NOTCH1-MYC highway toward T-cell acute lymphoblastic leukemia. Blood 2017; 129(9): 1124-1133. 4. Demarest RM, Ratti F, Capobianco AJ. It's T-ALL about Notch. Oncogene 2008; 27(38): 5082-91. 5. Girardi T, Vicente C, Cools J, De Keersmaecker K. The genetics and molecular biology of T-ALL. Blood 2017; 129(9): 1113-1123. 6. Joshi I, Minter LM, Telfer J, Demarest RM, Capobianco AJ, Aster JC et al. Notch signaling mediates G1/S cell-cycle progression in T cells via cyclin D3 and its dependent kinases. Blood 2009; 113(8): 1689-98. 7. Loven J, Hoke HA, Lin CY, Lau A, Orlando DA, Vakoc CR et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 2013; 153(2): 320-34. Disclosures Qian: 4Arvinas, LLC. New Haven, CT: Employment. Raina: 4Arvinas, LLC. New Haven, CT: Employment. McKay: 6 ImmunoGen, Inc.Waltham, MA: Employment. Kantarjian: Novartis: Research Funding; Amgen: Research Funding; Delta-Fly Pharma: Research Funding; Bristol-Meyers Squibb: Research Funding; Pfizer: Research Funding; ARIAD: Research Funding. Andreeff: Daiichi Sankyo: Consultancy.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1322-1322
Author(s):  
Manabu Kusakabe ◽  
Ann Chong Sun ◽  
Kateryna Tyshchenko ◽  
Rachel Wong ◽  
Aastha Nanda ◽  
...  

Abstract Mechanistic studies in human cancer have relied heavily on established cell lines and genetically engineered mouse models, but these are limited by in vitro adaptation and species context issues, respectively. More recent efforts have utilized patient-derived xenografts (PDX); however, as an experimental model these are hampered by their variable genetic background, logistic challenges in establishing and distributing diverse collections, and the fact they cannot be independently reproduced. We report here a completely synthetic, efficient, and highly reproducible means for generating T-cell acute lymphoblastic leukemia (T-ALL) de novo by lentiviral transduction of normal CD34+ human cord blood (CB) derived hematopoietic progenitors with a combination of known T-ALL oncogenes. Transduced CB cells exhibit differentiation arrest and multi-log expansion when cultured in vitro on OP9-DL1 feeders, and generate serially transplantable, aggressive leukemia when injected into immunodeficient NSG mice with latencies as short as 80 days (median 161 days, range 79-321 days). RNA-seq analysis of synthetic CB leukemias confirmed their reproducibility and similarity to PDX tumors, while whole exome sequencing revealed ongoing clonal evolution in vivo with acquisition of secondary mutations that are seen recurrently in natural human disease. The in vitro component of this synthetic system affords direct access to "pre-leukemia" cells undergoing the very first molecular changes as they are redirected from normal to malignant developmental trajectories. Accordingly, we performed RNA-seq and modified histone ChIP-seq on nascently transduced CB cells harvested from the first 2-3 weeks in culture. We identified coordinate upregulation of multiple anterior HOXB genes (HOXB2-B5) with contiguous H3K27 demethylation/acetylation as a striking feature in these early pre-leukemia cells. Interestingly, we also found coordinate upregulation of these same HOXB genes in a cohort of 264 patient T-ALLs (COG TARGET study) and that they defined a subset of patients with significantly poorer event-free survival (Log-rank p-value = 0.0132). Patients in the "HOXB high" subgroup are distinct from those with ETP-ALL, but are enriched within TAL1, NKX2-1, and "unknown" transcription factor genetic subgroups. We further show by shRNA-mediated knockdown that HOXB gene expression confers growth advantage in nascently transduced CB cells, established synthetic CB leukemias, and a subset of established human T-ALL cell lines. Of note, while there is prior literature on the role of HOXA genes in AML and T-ALL, and of HOXB genes in normal HSC expansion, this is the first report to our knowledge of a role for HOXB genes in human T-ALL despite over 2 decades of studies relying mostly on mouse leukemia and cell line models. The synthetic approach we have taken here allows investigation of both early and late events in human leukemogenesis and delivers an efficient and reproducible experimental platform that can support functional testing of individual genetic variants necessary for precision medicine efforts and targeted drug screening/validation. Further, since all tumors including PDXs continue to evolve during serial propagation in vivo, synthetic tumors represent perhaps the only means by which we can explore early events in cellular transformation and segregate their biology from confounding effects of multiple and varied secondary events that accumulate in highly "evolved" samples. Disclosures Steidl: Seattle Genetics: Consultancy; Tioma: Research Funding; Bristol-Myers Squibb: Research Funding; Roche: Consultancy; Juno Therapeutics: Consultancy; Nanostring: Patents & Royalties: patent holding.


Sign in / Sign up

Export Citation Format

Share Document