scholarly journals The Biological methods of selenium nanoparticles synthesis, their characteristics and properties

Author(s):  
O. Tsehmistrenko

Nanotechnologies have an impact on every sphere of life, change approaches to environmental recovery, introduce new methods of disease analysis and prevention, treatment, drug delivery and gene therapy, affect the provision of environmentally friendly alternative energy sources, increase crop yields, animal and poultry productivity. Physical, chemical, biological methods of synthesis of nanoparticles, selenium in particular, their properties and the factors participating in reduction of metal ions to nanoparticles are considered. Limitations of nanoparticle synthesis inherent in the biological method (identification and isolation of bioactive fragment responsible for biomineralization of metal ions, analysis of ways to develop individual nanoparticles) and factors contributing to the intensification of nanoparticle production (optimization of pH, temperature, contact time, mixing degree) changes in the total charge of functional organic molecules on the cell wall). It has been proved that these factors affect the size, morphology, composition of nanoparticles and their efficiency during the synthesis. The model of green synthesis with the use of physicochemical means and their biomedical applications have been summarized. There are organisms used for the synthesis of NPs - terrestrial and marine bacteria, bacterial extracellular polymeric substances as bioreductants, fungi, yeast, algae, viruses, microorganisms. It has been demonstrated the biochemical ways of microorganisms in order to fight the toxicity of metals during the synthesis of nanoproducts and the factors that determine the toxicity of metals that are converted into nanoparticles (size, shape, coating agent, nanoparticle density and type of pathogen). The biological role of selenium and features of its influence on an organism in a nanoscale scale are shown. Key words: nanotechnologies, nanoselenium, bacteria, green synthesis, enzymes.

2015 ◽  
Vol 4 (4) ◽  
Author(s):  
Tejaswi Thunugunta ◽  
Anand C. Reddy ◽  
Lakshmana Reddy D.C.

AbstractIn the past few years, nanoparticles have been applied in various fields of science and technology, ranging from material science to biotechnology. Thus, the synthesis of nanoparticles can be considered as a dynamic area in research and application of nanoparticles. The different methods of nanoparticle synthesis include physical, chemical, and biological methods. Of these methods, the biological synthesis is to be comparatively widely used due to its advantages of being low cost, nontoxic and environmental friendly. Bio-applications of nanoparticles have pawed way for green synthesis of nanoparticles. In this review, we have provided brief information on various biological agents used for the synthesis of nanoparticles.


2015 ◽  
Vol 39 (3) ◽  
pp. 1827-1839 ◽  
Author(s):  
Mahmood Tajbakhsh ◽  
Maryam Farhang ◽  
Seyed Meysam Baghbanian ◽  
Rahman Hosseinzadeh ◽  
Mahghol Tajbakhsh

Superparamagnetic supported metals complex catalysts have been synthesized and applied for the synthesis of propargylamines and 1,2,3-triazoles.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Akshay Rajeev Geetha ◽  
Elizabeth George ◽  
Akshay Srinivasan ◽  
Jameel Shaik

Production of silver nanoparticles from the leaf extracts ofPimenta dioicais reported for the first time in this paper. Three different sets of leaves were utilized for the synthesis of nanoparticles—fresh, hot-air oven dried, and sun-dried. These nanoparticles were characterized using UV-Vis spectroscopy and AFM. The results were diverse in that different sizes were seen for different leaf conditions. Nanoparticles synthesized using sun-dried leaves (produced using a particular ratio (1 : 0.5) of the leaf extract sample and silver nitrate (1 mM), resp.) possessed the smallest sizes. We believe that further optimization of the current green-synthesis method would help in the production of monodispersed silver nanoparticles having great potential in treating several diseases.


2001 ◽  
Vol 43 (6) ◽  
pp. 9-16 ◽  
Author(s):  
H.-C. Flemming ◽  
J. Wingender

Extracellular polymeric substances (EPSs) are involved in both detrimental and beneficial consequences of microbial aggregates such as biofilms, flocs and biological sludges. In biofouling, they are responsible for the increase of friction resistance, change of surface properties such as hydrophobicity, roughness, colour, etc. In biocorrosion of metals they are involved by their ability to bind metal ions. In bioweathering, they contribute by their complexing properties to the dissolution of minerals. The EPSs represent a sorption site for pollutants such as heavy metal ions and organic molecules. This can lead to a burden in wastewater sludge; on the other hand, the sorption properties can be used for water purification. Other biotechnological uses of EPS exploit their contribution to viscosity, e.g., in food, paints and oil-drilling ‘muds’; their hydrating properties are also used in cosmetics and pharmaceuticals. Furthermore, EPSs may have potential uses as biosurfactants, e.g., in tertiary oilproduction, and as biological glue. EPSs are an interesting component of all biofilm systems and still hold a large biotechnological potential.


Author(s):  
Mohib Shah ◽  
Natasha Anwar ◽  
Samreen Saleem ◽  
Iqbal Munir ◽  
Niaz Ali Shah ◽  
...  

Background. Nanotechnology is promising field for generating new applications. A green synthesis of nanoparticles through biological methods using plant extract have a reliable and ecofriendly approach to improve our global environment. Methods. Silver nanoparticles (AgNPs) were synthesized using aqueous extract of Anagalis arvensis L and silver nitrate and were physicochemically characterized. Results. The stability of AgNPs toward acidity, alkalinity, salinity and temperature showed that they remained stable at room temperature for more than two months. The SEM and TEM analysis of the AgNPs showed that they have a uniform spherical shape with an average size in the range of 40–78 nm. Further 1-Dibhenyl-2-Picrylhydrazl radical in Anagalis arvensis L.mediated AgNPs showed a maximum activity of 98% at concentration of 200μg/mL. Hydrogen peroxide scavenging assay in Anagalis arvensis L. mediated AgNPs showed a maximum activity of 85% at concentration of 200μg/mL. Reducing power of Anagalis arvensis L.Ag NPs exhibited a higher activity of 330 μg/mL at concentration of 200 μg/mL. These NPs have cytotoxic effects against brine shrimp (Artemia salina) nauplii with a value of 53% LD 178.04μg/mL. Conclusion. The AgNPs synthesized using Anagalis arvensis L. extract demonstrate a broad range of applications.


Nanomaterials ◽  
2021 ◽  
pp. 283-298
Author(s):  
Chidambaram Kulandaisamy Venil ◽  
Rajamanickam Usha ◽  
Ponnuswamy Renuka Devi

Chemosphere ◽  
2022 ◽  
pp. 133571
Author(s):  
Fahad Khan ◽  
Ayesha Shahid ◽  
Hui Zhu ◽  
Ning Wang ◽  
Muhammad Rizwan Javed ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document