scholarly journals An Inventory of Ferns (Pteridophyta) in Plantation PTPN Nusantara 3 Rantau Prapat District Labuhanbatu

Author(s):  
Jahot Tua Situmorang ◽  
Rosmidah Hasibuan

PTPN Nusantara 3 is one of the Companies engaged in the field of Rubber plantations and Palm oil that has a wide 9.150,80 ha. Rubber plantation PTPN Nusantara 3 Rantau Prapat is one area that there are many ferns. Ferns (Pteridophyta) are most commonly found in the area of rubber Plantation PTPN Nusantara 3 Rantau Prapat District Labuhanbatu is a family Dryopteridaceaese lot of 6 species, namely Nephrolepisbiserrata, Nephrolepiscor difolia, Nephrolepi sexaltata, Nephrolepissp, Ploecnemia irregularis and Stenochlaenae palustris. Based on the results of research conducted by researchers on 03-May-11 May 2021 in the rubber Plantation PTPN Nusantara 3 Rantau Prapat District Labuhanbatu, researchers found 7 famili ferns (Pteridophyta), namely Aspleniaceae, Blechnaceae, Davalliaceae, Dryopteridaceae, Gleicheniaceae, Lycopodiaceae, Polypodiaceae, with 17 species of ferns (Pteridophyta). Abiotic factors that can affect the growth of the nail is different because according to his needs, namely air temperature 29C-32 C while the soil moisture that is up 7.9%-69% and the pH of the soil ranged from 8.00 8,90.

2021 ◽  
Vol 4 (2) ◽  
pp. 53-59
Author(s):  
Priyono Prawito ◽  
Impetus Hasada Windu Sitorus ◽  
Zainal Muktamar ◽  
Bandi Hermawan ◽  
Welly Herman

Understanding the relation of agroecosystem types, ages, and soil properties are vital in maintaining good quality soil. This study aims to explore the variation of selected soil properties with agroecosystem types and ages. The research has been conducted in North Bengkulu, Indonesia. Soil properties on agroecosystems of 5-yr, 10-yr, 15-yr oil palm plantation, 5-yr, 10-yr, 15-yr rubber plantation, food cropland, and scrubland were evaluated. The study found that soil in oil palm and rubber plantations of any age have a similar texture, bulk density (BD), and actual soil moisture (ASM). All plantation agroecosystems and scrubland have higher clay and lower silt content than that in food cropland. In addition, the scrubland has the highest ASM content among the agroecosystems. On the other hand, both agroecosystems enhances soil chemical properties than food cropland and scrubland as indicated by the improvement of organic-C, total-N, available P, exchangeable K and CEC of Ultisols. Older plantation also provides higher soil chemical improvement than younger one. This finding is significant for management of sub optimal soil mainly Ultisols for oil palm and rubber plantation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Visha Kumari Venugopalan ◽  
Rajib Nath ◽  
Kajal Sengupta ◽  
Arpita Nalia ◽  
Saon Banerjee ◽  
...  

Soil moisture and air temperature stress are the two major abiotic factors limiting lentil (Lens culinaris Medik.) growth and productivity in the humid tropics. Field experiments were conducted during winter seasons (November to March) of 2018–2019 and 2019–2020 on clay loam soil (AericHaplaquept) of Eastern India to cultivate rainfed lentil, with residual moisture. The objective was to study the effect of different time of sowing and foliar spray of micronutrients in ameliorating the effect of heat and moisture stress lentil crop experience in its reproductive stage. The study was conducted with two different dates of sowing, November and December, as main plot treatment and micronutrients foliar spray of boron, iron, and zinc either alone or in combination as subplot treatment. No foliar spray treatment was considered as a control. The soil moisture content is depleted from 38 to 18% (sowing to harvest) during November sowing; however, in December sowing, the depletion is from 30 to 15%. The foliar spray of micronutrients helped to have a better canopy cover and thus reduced soil evaporation during the later stages of crop growth when the temperature was beyond the threshold temperature of the crop. Crop growth rate (CGR) and biomass were significantly higher (p ≤ 0.05) for November sown crop and with foliar spray of boron and iron (FSB + FE) micronutrients. In the later stages of the crop when the soil moisture started depleting with no precipitation, the canopy temperature increased compared with air temperature, leading to positive values of Stress Degree Days (SDD) index. Delay in sowing reduced the duration by 11.4 days (113.5 vs. 102.1 days), resulting in varied accumulated Growing Degree Days (GDD). FSB + FE resulted in the highest yield in both years (1,436 and 1,439 kg ha−1). The results of the study concluded that the optimum time of sowing and foliar spray of micronutrients may be helpful to alleviate the soil moisture and heat stress for the sustainability of lentil production in the subtropical region.


2019 ◽  
Vol 2 (1) ◽  
pp. 1-12
Author(s):  
Merti Triyanti ◽  
Destien Atmi Arisandy

The purpose of this study was to determine the diversity of stratum vegetation in Sulap City, Lubuklinggau City based on composition, density of vegetation types and to know abiotic factors for stratum vegetation in Sulap Hill, Lubuklinggau City. This type of research is quantitative descriptive. The method used is the distance method (Centered Quarter Point). The population in this study were all species of stratum vegetation in the Bukit Sulap vegetation in Lubuklinggau City. The analysis used is in the form of density, frequency, dominance, important value index, and diversity index. The results of the study, obtained data in the study area A found 16 species of pole strata. In the study area B, 14 species of stratum were obtained, whereas in the study area C, 24 species of stratum were found. Measured abiotic factors are the air temperature in the Sulap Hill of Lubuklinggau City ranging from 28.30C - 300C with air humidity of 86% - 93%. Soil moisture ranges from 8-17 while the acidity (pH) of the soil ranges from 6.3 to 6.7. Conclusion, the mean of the Important Value Index (INP) in the Pole strata in the areas of study A, B, and C respectively is ketapang, starfruit, and coffee. Keywords: analysis, vegetation, pole strata, magic hill


2021 ◽  
Vol 25 (2) ◽  
pp. 137
Author(s):  
Henri Henri ◽  
Rusidi Rusidi ◽  
Ratna Santi

The mosses growth is generally influenced by temperature, habitat humidity, light intensity, and soil acidity. This study aimed to determine the level of diversity of bryophytes species on various substrates in the Nenek Hills Natural Tourism Park of Mount Permisan, South Bangka Regency. The methods used in this study were exploration and observation. The results of this study are the types of mosses (Bryophytes) found Nenek Hills Natural Tourism Park of Mount Permisan, South Bangka Regency, are from the families Calymperaceae, Dicranaceae, Fissidentaceae, Leucobryaceae, Rhizogoniaceae, Sematophylaceae, Calypogeiaceae, Geocalyceae, Lejeuneaceae, Lepidoziaceae and Plagiochilaceae. The dominating family is Leucobryaceae, Lejeuneaceae and Calymperaceae. The type of substrate that moss prefers to grow is rock. Abiotic factors consist of light intensity with a value of 0,2-7,2 Klx (low), air temperature with a value of 25-29°C (medium-high), humidity with a value of 34-68% (medium-high), soil acidity with a value of 5,9-6,9 (slightly-neutral) and soil moisture with a value of 52-65% (moist).


2007 ◽  
Vol 46 (10) ◽  
pp. 1587-1605 ◽  
Author(s):  
J-F. Miao ◽  
D. Chen ◽  
K. Borne

Abstract In this study, the performance of two advanced land surface models (LSMs; Noah LSM and Pleim–Xiu LSM) coupled with the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5), version 3.7.2, in simulating the near-surface air temperature in the greater Göteborg area in Sweden is evaluated and compared using the GÖTE2001 field campaign data. Further, the effects of different planetary boundary layer schemes [Eta and Medium-Range Forecast (MRF) PBLs] for Noah LSM and soil moisture initialization approaches for Pleim–Xiu LSM are investigated. The investigation focuses on the evaluation and comparison of diurnal cycle intensity and maximum and minimum temperatures, as well as the urban heat island during the daytime and nighttime under the clear-sky and cloudy/rainy weather conditions for different experimental schemes. The results indicate that 1) there is an evident difference between Noah LSM and Pleim–Xiu LSM in simulating the near-surface air temperature, especially in the modeled urban heat island; 2) there is no evident difference in the model performance between the Eta PBL and MRF PBL coupled with the Noah LSM; and 3) soil moisture initialization is of crucial importance for model performance in the Pleim–Xiu LSM. In addition, owing to the recent release of MM5, version 3.7.3, some experiments done with version 3.7.2 were repeated to reveal the effects of the modifications in the Noah LSM and Pleim–Xiu LSM. The modification to longwave radiation parameterizations in Noah LSM significantly improves model performance while the adjustment of emissivity, one of the vegetation properties, affects Pleim–Xiu LSM performance to a larger extent. The study suggests that improvements both in Noah LSM physics and in Pleim–Xiu LSM initialization of soil moisture and parameterization of vegetation properties are important.


2018 ◽  
Vol 40 (2) ◽  
pp. 159 ◽  
Author(s):  
Luomeng Chao ◽  
Zhiqiang Wan ◽  
Yulong Yan ◽  
Rui Gu ◽  
Yali Chen ◽  
...  

Aspects of carbon exchange were investigated in typical steppe east of Xilinhot city in Inner Mongolia. Four treatments with four replicates were imposed in a randomised block design: Control (C), warming (T), increased precipitation (P) and combined warming and increased precipitation (TP). Increased precipitation significantly increased both ecosystem respiration (ER) and soil respiration (SR) rates. Warming significantly reduced the ER rate but not the SR rate. The combination of increased precipitation and warming produced an intermediate response. The sensitivity of ER and SR to soil temperature and air temperature was assessed by calculating Q10 values: the increase in respiration for a 10°C increase in temperature. Q10 was lowest under T and TP, and highest under P. Both ER and SR all had significantly positive correlation with soil moisture. Increased precipitation increased net ecosystem exchange and gross ecosystem productivity, whereas warming reduced them. The combination of warming and increased precipitation had an intermediate effect. Both net ecosystem exchange and gross ecosystem productivity were positively related to soil moisture and negatively related to soil and air temperature. These findings suggest that predicted climate change in this region, involving both increased precipitation and warmer temperatures, will increase the net ecosystem exchange in the Stipa steppe meaning that the ecosystem will fix more carbon.


2013 ◽  
Vol 10 (11) ◽  
pp. 7575-7597 ◽  
Author(s):  
K. A. Luus ◽  
Y. Gel ◽  
J. C. Lin ◽  
R. E. J. Kelly ◽  
C. R. Duguay

Abstract. Arctic field studies have indicated that the air temperature, soil moisture and vegetation at a site influence the quantity of snow accumulated, and that snow accumulation can alter growing-season soil moisture and vegetation. Climate change is predicted to bring about warmer air temperatures, greater snow accumulation and northward movements of the shrub and tree lines. Understanding the responses of northern environments to changes in snow and growing-season land surface characteristics requires: (1) insights into the present-day linkages between snow and growing-season land surface characteristics; and (2) the ability to continue to monitor these associations over time across the vast pan-Arctic. The objective of this study was therefore to examine the pan-Arctic (north of 60° N) linkages between two temporally distinct data products created from AMSR-E satellite passive microwave observations: GlobSnow snow water equivalent (SWE), and NTSG growing-season AMSR-E Land Parameters (air temperature, soil moisture and vegetation transmissivity). Due to the complex and interconnected nature of processes determining snow and growing-season land surface characteristics, these associations were analyzed using the modern nonparametric technique of alternating conditional expectations (ACE), as this approach does not impose a predefined analytic form. Findings indicate that regions with lower vegetation transmissivity (more biomass) at the start and end of the growing season tend to accumulate less snow at the start and end of the snow season, possibly due to interception and sublimation. Warmer air temperatures at the start and end of the growing season were associated with diminished snow accumulation at the start and end of the snow season. High latitude sites with warmer mean annual growing-season temperatures tended to accumulate more snow, probably due to the greater availability of water vapor for snow season precipitation at warmer locations. Regions with drier soils preceding snow onset tended to accumulate greater quantities of snow, likely because drier soils freeze faster and more thoroughly than wetter soils. Understanding and continuing to monitor these linkages at the regional scale using the ACE approach can allow insights to be gained into the complex response of Arctic ecosystems to climate-driven shifts in air temperature, vegetation, soil moisture and snow accumulation.


2017 ◽  
Author(s):  
Sara C. Pryor ◽  
Ryan C. Sullivan ◽  
Justin T. Schoof

Abstract. The static energy content of the atmosphere is increasing at the global scale, but exhibits important sub-global and sub-regional scales of variability and is a useful parameter for integrating the net effect of changes in the partitioning of energy at the surface and for improving understanding of the causes of so-called warming-holes (i.e. locations with decreasing daily maximum air temperatures (T) or increasing trends of lower magnitude than the global mean). Further, measures of the static energy content (herein the equivalent potential temperature, θe) are more strongly linked to excess human mortality and morbidity than air temperature alone, and have great relevance in understanding causes of past heat-related excess mortality and making projections of possible future events that are likely to be associated with negative human health and economic consequences. A new non-linear statistical model for summertime daily maximum and minimum θe is developed and used to advance understanding of drivers of historical change and variability over the eastern USA. It is shown that soil moisture (SM) is particularly important in determining the magnitude of θe over regions that have previously been identified as exhibiting warming holes confirming the key importance of SM in dictating the partitioning of net radiation into sensible and latent heat and dictating trends in near-surface T and θe. Consistent with our a priori expectations, models built using Artificial Neural Networks (ANN) out-perform linear models that do not permit interaction of the predictor variables (global T, synoptic-scale meteorological conditions and SM). This is particularly marked in regions with high variability in min- and max-θe, where more complex models built using ANN with multiple hidden layers are better able to capture the day-to-day variability in θe and the occurrence of extreme max-θe. Over the entire domain the ANN with 3 hidden layers exhibits high accuracy in predicting max-θe > 347 K. The median hit rate for max-θe > 347 K is > 0.60, while the median false alarm rate ≈ 0.08.


2011 ◽  
Vol 3 (3) ◽  
pp. 170 ◽  
Author(s):  
Ailton Marcolino Liberato ◽  
José Ivaldo B. De Brito

A presente pesquisa teve por objetivo investigar possíveis alterações em componentes do balanço hídrico climático, associadas a diferentes cenários (A2 e B2) das mudanças climáticas do IPCC, para a Amazônia Ocidental (Acre, Amazonas, Rondônia e Roraima). Os dados climatológicos de temperatura do ar e totais de precipitação pluvial usados como referência neste estudo, são oriundos do INMET (1961-2005), da CEPLAC (1983-1999) e da reanálise do NCEP/NCAR (1983-1995). O método utilizado na elaboração do balanço hídrico é o de Thornthwaite e Mather (1957) modificado por Krishan (1980). Os resultados das projeções mostram tendência de clima mais seco, diminuição na umidade do solo, redução na vazão dos rios, aumento no risco de incêndio e diminuição no escoamento superficial e sub-superficial para a Amazônia Ocidental até 2100.Palavras-chave: cenários, índices climáticos, Amazônia. Influence of Climate Change on Water Budget of Western Amazonia ABSTRACTThe main objective of this study was investigate possible alterations in the climatic water budget components associated with different scenarios (A2 and B2) of the IPCC to Amazonian Western (Acre, Amazonas, Rondônia and Roraima). The climatological data of air temperature and precipitation from the INMET (1961-2005), CEPLAC (1983-1999) and NCEP/NCAR reanalysis (1983-1995) were used in the present study. The Thornthwaite and Mather (1955) method was used in the elaboration of the climatic water budget modified by Krishan (1980). The results of the projections show drier climate trends and decrease of the soil moisture, reduction in the rivers discharge, increase in the fire risk and decrease in the runoff for the Amazonian Western up to 2100. Keywords: scenarios, climate index, Amazonian.


Sign in / Sign up

Export Citation Format

Share Document